Ellipse Coefficient Map-Based Geomagnetic Fingerprint Considering Azimuth Angles
Abstract
:1. Introduction
2. Related Works
2.1. Signal Characteristics of 3-Axis Geomagnetism
2.2. Wi-Fi and Geomagnetic Fingerprint
3. Proposed ECM Based UFEE
3.1. Proposed UFEE in the Training Phase
3.2. The UFEE in Positioning Phase
4. Experiment Setup and Results
4.1. Experiment Setup
4.2. Experiment Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seong, J.H.; Choi, E.C.; Lee, J.S.; Seo, D.H. High-speed positioning and automatic updating technique using Wi-Fi and UWB in a ship. Wirel. Pers. Commun. 2017, 94, 1105–1121. [Google Scholar] [CrossRef]
- Seong, J.H.; Seo, D.H. Environment adaptive localization method using Wi-Fi and Bluetooth low energy. Wirel. Pers. Commun. 2018, 99, 765–778. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Liu, Q.; Yin, Y.; Cheng, L.; Zimmermann, R. Fusion of magnetic and visual sensors for indoor localization: Infrastructure-free and more effective. IEEE Trans. Multimedia 2017, 19, 874–888. [Google Scholar] [CrossRef]
- Ma, Y.; Dou, Z.; Jiang, Q.; Hou, Z. Basmag: An optimized HMM-based localization system using backward sequences matching algorithm exploiting geomagnetic information. IEEE Sens. J. 2016, 16, 7472–7482. [Google Scholar] [CrossRef]
- Lee, K.M.; Li, M.; Lin, C.Y. Magnetic tensor sensor and way-finding method based on geomagnetic field effects with applications for visually impaired users. IEEE/ASME Trans. Mechatron. 2016, 21, 2694–2704. [Google Scholar] [CrossRef]
- Shu, Y.; Bo, C.; Zhao, C.; Li, L.; Zhao, F. Magicol: indoor localization using pervasive magnetic field and opportunistic WiFi sensing. IEEE J. Sel. Areas Commun. 2015, 33, 1443–1457. [Google Scholar] [CrossRef]
- Bi, Y.; Shamsi, K.; Yuan, J.S.; Jin, Y.; Niemier, M.; Hu, X.S. Tunnel fet current mode logic for dpa-resilient circuit designs. IEEE Trans. Emerg. Top. Comput. 2017, 5, 340–352. [Google Scholar] [CrossRef]
- Zhang, C.; Subbu, K.P.; Luo, J.; Wu, J. GROPING: geomagnetism and crowdsensing powered indoor navigation. IEEE Trans. Mobile Comput. 2015, 14, 387–400. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Luo, Z. Dynamic route prediction with the magnetic field strength for indoor positioning. Int. J. Wirel. Mobile Comput. 2017, 12, 16–35. [Google Scholar] [CrossRef]
- Chung, J.; Donahoe, M.; Schmandt, C.; Kim, I.J.; Razavai, P.; Wiseman, M. Indoor location sensing using geo-magnetism. In Proceedings of the 9th international conference on Mobile systems, applications, and services, Bethesda, MD, USA, 28 June–1 July 2011. [Google Scholar]
- Xie, H.; Gu, T.; Tao, X.; Ye, H.; Liu, J. A reliability-augmented particle filter for magnetic fingerprint based indoor localization on smartphone. IEEE Trans. Mobile Comput. 2016, 15, 1877–1892. [Google Scholar] [CrossRef]
- Li, B.; Gallagher, T.; Dempster, A.G.; Rizos, C. How feasible is the use of magnetic field alone for indoor positioning. In Proceedings of the 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, Australia, 13–15 November 2012. [Google Scholar]
- Lucas, C.E.; Richards, T.C. A Novel Technique for Modelling Ship Magnetic Signatures; Atlantic Research Centre: Halifax, NS, Canada, 2015. [Google Scholar]
- Guo, P.; Qiu, H.; Yang, Y.; Ren, Z. The Soft Iron and Hard Iron Calibration Method using Extended Kalman Filter for Attitude and Heading Reference System. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2008. [Google Scholar]
- Seong, J.H.; Seo, D.H. Wi-Fi fingerprint using radio map model based on MDLP and euclidean distance based on the Chi squared test. Wirel. Netw. 2018, 1–9. [Google Scholar] [CrossRef]
- Xia, S.; Liu, Y.; Yuan, G.; Zhu, M.; Wang, Z. Indoor fingerprint positioning based on WiFi: An overview. ISPRS Int. J. Geo-Inf. 2017, 6, 135. [Google Scholar] [CrossRef]
- Rosin, P.L. A note on the least squares fitting of ellipses. Pattern Recognit. Lett. 1993, 14, 799–808. [Google Scholar] [CrossRef]
Floors | Accuracy (<1.5 m) | |
---|---|---|
MGIF [10] | Proposed UFEE | |
2F | 39.01% | 91.85% |
3F | 15.80% | 89.14% |
4F | 26.17% | 86.42% |
Average | 27.00% | 89.14% |
Floors | Value | Distance Error | |
---|---|---|---|
MGIF [10] | Proposed UFEE | ||
2F | Min | 1.00 m | 0.20 m |
Max | 12.00 m | 7.45 m | |
3F | Min | 1.00 m | 0.67 m |
Max | 12.00 m | 4.53 m | |
4F | Min | 1.00 m | 0.13 m |
Max | 11.40 m | 6.27 m |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, J.-H.; Lee, S.-H.; Yoon, K.-K.; Seo, D.-H. Ellipse Coefficient Map-Based Geomagnetic Fingerprint Considering Azimuth Angles. Symmetry 2019, 11, 708. https://doi.org/10.3390/sym11050708
Seong J-H, Lee S-H, Yoon K-K, Seo D-H. Ellipse Coefficient Map-Based Geomagnetic Fingerprint Considering Azimuth Angles. Symmetry. 2019; 11(5):708. https://doi.org/10.3390/sym11050708
Chicago/Turabian StyleSeong, Ju-Hyeon, Seung-Hyun Lee, Kyoung-Kuk Yoon, and Dong-Hoan Seo. 2019. "Ellipse Coefficient Map-Based Geomagnetic Fingerprint Considering Azimuth Angles" Symmetry 11, no. 5: 708. https://doi.org/10.3390/sym11050708