Homochirality: A Perspective from Fundamental Physics
Abstract
:1. Introduction
2. Electroweak Parity Violation
2.1. Electron-Nucleon Interaction
2.2. Electron-Neutrino Interaction
3. Gravitational Parity Violation
3.1. Chern-Simons Modified General Relativity and Loop Quantum Gravity
3.2. Gravitationally Selected Homochirality?
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guijarro, A.; Yus, M. The Origin of Chirality in the Molecules of Life; RSC Publishing: Cambridge, UK, 2009. [Google Scholar]
- Engel, M.H.; Macko, S.A. Isotopic evidence for extraterrestrial non- racemic amino acids in the Murchison meteorite. Nature 1997, 389, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Pizzarello, S.; Huang, Y. The deuterium enrichment of individual amino acids in carbonaceous meteorites: A case for the presolar distribution of biomolecules precursors. Geochim. Cosmochim. Acta 2005, 69, 599–605. [Google Scholar] [CrossRef]
- Cronin, J.R.; Pizzarello, S. Enantiomeric Excesses in Meteoritic Amino Acids. Science 1997, 275, 951–955. [Google Scholar] [CrossRef]
- Quack, M. On the measurement of the parity violating energy difference between enantiomers. Chem. Phys. Lett. 1986, 132, 147–153. [Google Scholar] [CrossRef]
- MacDermott, A.J.; Hegstrom, R.A. A proposed experiment to measure the parity-violating energy difference between enantiomers from the optical rotation of chiral ammonia-like “cat" molecules. Chem. Phys. 2004, 305, 55. [Google Scholar] [CrossRef]
- MacDermott, A.J.; Hegstrom, R.A. Optical rotation of molecules in beams: The magic angle. Chem. Phys. 2004, 305, 47. [Google Scholar] [CrossRef]
- Darquié, B.; Stoeffler, C.; Zrig, S.; Crassous, J.; Soulard, P.; Asselin, P.; Huet, T.R.; Guy, L.; Bast, R.; Saue, T.; et al. Progress toward a first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 2010, 22, 870–884. [Google Scholar] [CrossRef]
- Lahamer, A.S.; Mahurin, S.M.; Compton, R.N.; House, D.; Laerdahl, J.K.; Lein, M.; Schwerdtfeger, P. Search for a Parity-Violating Energy Difference between Enantiomers of a Chiral Iron Complex. Phys. Rev. Lett. 2000, 85, 4470. [Google Scholar] [CrossRef] [PubMed]
- Ledbetter, M.P.; Crawford, C.W.; Pines, A.; Wemmer, D.E.; Knappe, S.; Kitching, J.; Budker, D. Optical detection of NMR J–spectra at zero magnetic field. J. Magn. Reson. 2009, 199, 25–29. [Google Scholar] [CrossRef]
- DeMille, D.; Cahn, S.B.; Murphree, D.; Rahmlow, D.A.; Kozlov, M.G. Using Molecules to Measure Nuclear Spin-Dependent Parity Violation. Phys. Rev. Lett. 2008, 100, 023003. [Google Scholar] [CrossRef]
- Altuntas, E.; Ammon, J.; Cahn, S.B.; DeMille, D. Demonstration of a Sensitive Method to Measure Nuclear-Spin-Dependent Parity Violation. Phys. Rev. Lett. 2018, 120, 142501. [Google Scholar] [CrossRef] [Green Version]
- Quintero–Pérez, M.; Wall, T.E.; Hoekstra, S.; Bethlem, H.L. Preparation of an ultra–cold sample of ammonia molecules for precision measurements. J. Mol. Spectrosc. 2014, 300, 112–115. [Google Scholar] [CrossRef]
- Schnell, M.; Meijer, G. Cold molecules: Preparation, applications, and challenges. Angew. Chem. Int. Ed. 2009, 48, 6010–6031. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, M. Experimental Tests of Parity Violation at Helical Polysilylene Level. Macromol. Rapid Commun. 2001, 22, 669. [Google Scholar] [CrossRef]
- Fujiki, M. Mirror Symmetry Breaking in Helical Polysilanes: Preference between Left and Right of Chemical and Physical Origin. Symmetry 2010, 2, 1625–1652. [Google Scholar] [CrossRef] [Green Version]
- Fujiki, M.; Koe, J.R.; Mori, T.; Kimura, Y. Questions of Mirror Symmetry at the Photoexcited and Ground States of Non-Rigid Luminophores Raised by Circularly Polarized Luminescence and Circular Dichroism Spectroscopy: Part 1. Oligofluorenes, Oligophenylenes, Binaphthyls and Fused Aromatics. Molecules 2018, 23, 2606. [Google Scholar] [CrossRef] [PubMed]
- Bargueño, P.; Gonzalo, I.; de Tudela, R.P. Detection of parity violation in chiral molecules by external tuning of electroweak optical activity. Phys. Rev. A 2009, 80, 012110. [Google Scholar] [CrossRef]
- Gonzalo, I.; Bargueño, P.; de Tudela, R.P.; Miret–Artés, S. Towards the detection of parity symmetry breaking in chiral molecules. Chem. Phys. Lett. 2010, 489, 127–129. [Google Scholar] [CrossRef] [Green Version]
- Bargueño, P.; Pérez de Tudela, R.; Miret-Artés, S.; Gonzalo, I. An alternative route to detect parity violating energy differences through Bose-Einstein condensation of chiral molecules. Phys. Chem. Chem. Phys. 2011, 13, 806. [Google Scholar] [CrossRef]
- Bargueño, P.; Sols, F. Macroscopic amplification of electroweak effects in molecular Bose-Einstein condensates. Phys. Rev. A 2012, 85, 021605(R). [Google Scholar] [CrossRef]
- Harris, R.A.; Stodolsky, L. Quantum beats in optical activity and weak interactions. Phys. Lett. B 1978, 78, 313–317. [Google Scholar] [CrossRef]
- Soai, K.; Sato, I.; Shibata, T.; Komiya, S.; Hayashi, M.; Matsueda, Y.; Imamura, H.; Hayase, T.; Morioka, H.; Tabira, H.; et al. Asymmetric synthesis of pyrimidyl alkanol without adding chiral substances by the addition of diisopropylzinc to pyrimidine-5-carbaldehyde in conjunction with asymmetric autocatalysis. Tetrahedron Asymm. 2003, 14, 185–188. [Google Scholar] [CrossRef]
- Lente, G. Stochastic Interpretation of the Asymmetry of Enantiomeric Distribution Observed in the Absolute Asymmetric Soai Reaction. Tetrahedron Asymm. 2011, 22, 1595–1599. [Google Scholar] [CrossRef]
- MacDermott, A.J.; Fu, T.; Nakatsuka, R.; Coleman, A.P.; Hyde, G.O. Parity–Violating Energy Shifts of Murchison L–Amino Acids are Consistent with an Electroweak Origin of Meteorite L–Enantiomeric Excesses. Orig. Life Evol. Biosph. 2009, 39, 459–478. [Google Scholar] [CrossRef] [PubMed]
- Lente, G. Stochastic Analysis of the Parity-Violating Energy Differences between Enantiomers and Its Implications for the Origin of Biological Chirality. J. Phys. Chem. A 2006, 110, 12711–12713. [Google Scholar] [CrossRef] [PubMed]
- Cline, D.B. (Ed.) Proceedings of the 1st Symposium on the Physical Origins of Homochirality of Life, Santa Monica, CA, USA, February 1995; AIP Press: Woodbury, NY, USA, 1996. [Google Scholar]
- Cline, D.B. Supernova Antineutrino Interactions Cause Chiral Symmetry Breaking and Possibly Homochiral Biomaterials for Life. Chirality 2005, 17, S234. [Google Scholar] [CrossRef]
- Bargueño, P.; Gonzalo, I. Effect of cosmological neutrinos on discrimination between the two enantiomers of a chiral molecule. Orig. Life Evol. Biosph. 2006, 36, 171–176. [Google Scholar] [CrossRef]
- Bargueño, P.; Dobado, A.; Gonzalo, I. Could dark matter or neutrinos discriminate between the enantiomers of a chiral molecule? EPL (Europhys. Lett.) 2008, 82, 13002. [Google Scholar] [CrossRef] [Green Version]
- Bargueño, P.; de Tudela, R.P. The role of supernova neutrinos on molecular homochirality. Orig. Life Evol. Biosph. 2007, 37, 253–257. [Google Scholar] [CrossRef]
- Tsarev, V.A. Physical and Astrophysical Aspects of the Problem of Origin of Chiral Asymmetry of the Biosphere. Phys. Part. Nucl. 2009, 40, 998. [Google Scholar] [CrossRef]
- Boyd, R.N.; Kajino, T.; Onaka, T. Supernovae and the Chirality of the Amino Acids. Astrobiology 2010, 10, 561. [Google Scholar] [CrossRef]
- Boyd, R.N.; Kajino, T.; Onaka, T. Supernovae, Neutrinos and the Chirality of Amino Acids. Int. J. Mol. Sci. 2011, 12, 3432–3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Famiano, M.; Boyd, R.; Kajino, T.; Onaka, T.; Koehler, K.; Hulbert, S. Determining Amino Acid Chirality in the Supernova Neutrino Processing Model. Symmetry 2014, 6, 909–925. [Google Scholar] [CrossRef] [Green Version]
- Famiano, M.; Boyd, R.; Kajino, T.; Onaka, T. Selection of Amino Acid Chirality via Neutrino Interactions with 14N in Crossed Electric and Magnetic Fields. Astrobiology 2018, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Bargueño, P. Chirality and gravitational parity violation. Chirality 2015, 27, 375. [Google Scholar] [CrossRef]
- Bargueño, P.; de Tudela, R.P. Constraining long–range parity violation in gravitation using high resolution spectroscopy of chiral molecules. Phys. Rev. D 2008, 78, 102004. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, Q.; Zhao, H.-H.; Gong, Q.-L.; Yang, S.-Q.; Luo, P.; Shao, C.-G.; Wang, Q.-L.; Tu, L.-C.; Luo, J. Test of the Equivalence Principle with Chiral Masses Using a Rotating Torsion Pendulum. Phys. Rev. Lett. 2018, 121, 261101. [Google Scholar] [CrossRef]
- Lee, T.D.; Yang, C.N. Question of parity violation in weak interactions. Phys. Rev. 1956, 104, 254–258. [Google Scholar] [CrossRef]
- Wu, C.S.; Ambler, E.; Hayward, R.W.; Hoppes, D.D.; Hudson, R.P. An experimental test of parity conservation in beta decay. Phys. Rev. 1957, 105, 1413–1415. [Google Scholar] [CrossRef]
- Glashow, S.L. Partial symmetries of weak interactions. Nucl. Phys. 1961, 22, 579–588. [Google Scholar] [CrossRef]
- Weinberg, S. A model of leptons. Phys. Rev. Lett. 1967, 19, 1264–1266. [Google Scholar] [CrossRef]
- Salam, A. Weak and electromagnetic interactions. In Proceedings of the 8th Nobel Symposium, 15–19 May 1968; Svartholom, N., Ed.; Almkvist und Wiksel: Stockholm, Sweden, 1968; pp. 367–377. [Google Scholar]
- ’t Hooft, G. iA onfrontation with infinity. Rev. Mod. Phys. 2000, 72, 333–339. [Google Scholar] [CrossRef]
- Veltman, M.G.J. From weak interactions to gravitation. Rev. Mod. Phys. 2000, 72, 341–349. [Google Scholar] [CrossRef]
- Groom, D.E.; Aguilar-Benitez, M.; Amsler, C.; Barnett, R.M.; Burchat, P.R.; Carone, C.D.; Caso, C.; Conforto, G.; Dahl, O.; Doser, M.; et al. Review of Particle Physics 2000. Eur. Phys. J. C 2000, 15, 1–878. [Google Scholar]
- Statement from ATLAS. Available online: http://www.atlas.ch/news/2012/latest-results-from-higgs-search.html (accessed on 20 December 2012).Statement from CMS. Available online: http://cms.web.cern.ch/news/observation-new-particle-mass-125-gev (accessed on 12 December 2012).Aad, G.; et al. (ATLAS collaboration). Observation of a new particle in the search for the Standard Model Higgs Boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar]Chatrchyan, S.; et al. (CMS collaboration). Observation of a new Boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar]
- Bouchiat, M.A.; Bouchiat, C. Parity violation induced by weak neutral currents in atomic physics. J. Phys. (Fr.) 1974, 35, 899–927. [Google Scholar] [CrossRef]
- Khriplovich, I.B. Parity Nonconservation in Atomic Phenomena; Gordon and Breach: Philadelphia, PA, USA, 1991. [Google Scholar]
- Wood, C.S.; Bennett, S.C.; Cho, D.; Masterson, B.P.; Roberts, J.L.; Tanner, C.E.; Wiemann, C.E. Measurement of Parity Nonconservation and an Anapole Moment in Cesium. Science 1997, 275, 1759–1763. [Google Scholar] [CrossRef]
- Ginges, J.S.M.; Flambaum, V.V. Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles. Phys. Rep. 2004, 397, 63–154. [Google Scholar] [CrossRef] [Green Version]
- Langacker, P. The Physics of Heavy Z’ Gauge Bosons. Rev. Mod. Phys. 2009, 81, 1199–1228. [Google Scholar] [CrossRef]
- DeMille, D.; Dyle, J.M.; Sushkov, A.O. Probing the frontiers of particle physics with tabletop-scale experiments. Science 2017, 357, 990. [Google Scholar] [CrossRef]
- Safronova, M.S.; Budker, D.; DeMille, D.; Kimball, D.F.J.; Derevianko, A.; Clark, C.W. Search for new physics with atoms and molecules. Rev. Mod. Phys. 2018, 90, 025008. [Google Scholar] [CrossRef]
- Bakasov, A.; Ha, T.K.; Quack, M. Ab initio calculation of molecular energies including parity violating interactions. J. Chem. Phys. 1999, 109, 7263–7285. [Google Scholar] [CrossRef]
- Quack, M.; Stohner, J. Influence of parity violating weak nuclear potentials on vibrational and rotational frequencies in chiral molecules. Phys. Rev. Lett. 2000, 84, 3807–3810. [Google Scholar] [CrossRef]
- Quack, M.; Stohner, J. Combined multidimensional anharmonic and parity violating effects in CDBrClF. J. Chem. Phys. 2003, 119, 11228–11240. [Google Scholar] [CrossRef]
- Quack, M. Fundamental Symmetries and Symmetry Violations from High Resolution Spectroscopy. In Handbook of High Resolution Spectroscopy; Quack, M., Merkt, F., Eds.; Wiley: Chichester, UK; New York, NY, USA, 2011; Volume 1, Chapter 18; pp. 659–722. [Google Scholar]
- Schwerdtfeger, P. Computational Spectroscopy; Grunenberg, J., Ed.; Wiley: Chichester, UK; New York, NY, USA, 2010; pp. 201–221. [Google Scholar]
- Berger, R. Parity Violation Effects in Molecules. Theor. Comput. Chem. 2004, 14, 188–288. [Google Scholar]
- Barron, L.D. Fundamental symmetry aspects of optical activity. Chem. Phys. Lett. 1981, 79, 392–394. [Google Scholar] [CrossRef]
- Barron, L.D. Optical activity and time reversal. Mol. Phys. 1981, 43, 1395–1406. [Google Scholar] [CrossRef]
- Barron, L.D. True and false chirality and absolute asymmetric synthesis. J. Am. Chem. Soc. 1986, 108, 5539–5542. [Google Scholar] [CrossRef]
- Barron, L.D. Symmetry and molecular chirality. Chem. Soc. Rev. 1986, 15, 189–223. [Google Scholar] [CrossRef]
- Barron, L.D. True and false chirality and parity violation. Chem. Phys. Lett. 1986, 123, 423–427. [Google Scholar] [CrossRef]
- Barron, L.D. Reactions of chiral molecules in the presence of a time-non-invariant enantiomorphous influence: A new kinetic principle based on the breakdown of microscopic reversibility. Chem. Phys. Lett. 1987, 135, 1–8. [Google Scholar] [CrossRef]
- Barron, L.D. Fundamental symmetry aspects of molecular chirality. In New Developments in Molecular Chirality; Mezey, P.G., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991; pp. 1–5. [Google Scholar]
- Avalos, M.; Babiano, R.; Cintas, P.; Jiménez, J.L.; Palacios, J.C.; Barron, L.D. Absolute asymmetric synthesis under physical fields: Facts and fictions. Chem. Rev. 1998, 98, 2391–2404. [Google Scholar] [CrossRef]
- Barron, L.D. CP violation and molecular physics. Chem. Phys. Lett. 1994, 221, 311–316. [Google Scholar] [CrossRef]
- Barron, L.D. Cosmic Chirality both True and False. Chirality 2012, 24, 957. [Google Scholar] [CrossRef] [PubMed]
- Barron, L.D. True and false chirality and absolute enantioselection. Rend. Fis. Acc. Lincei 2013, 24, 179–189. [Google Scholar] [CrossRef]
- Kondepudi, D.K. Selection of molecular chirality by extremely weak chiral interactions under far from equilibrium conditions. Biosystems 1987, 20, 75. [Google Scholar] [CrossRef]
- Lente, G. The Role of Stochastic Models in Interpreting the Origins of Biological Chiralit. Symmetry 2010, 2, 767–798. [Google Scholar] [CrossRef]
- Leitner, J.; Okubo, S. Parity charge conjugation + time reversal in gravitational interaction. Phys. Rev. 1964, 136, B1542. [Google Scholar] [CrossRef]
- Dass, N.D.H. Test for C, P, and T nonconservation in gravitation. Phys. Rev. Lett. 1976, 36, 393–395. [Google Scholar] [CrossRef]
- Alexander, S.; Yunes, N. Chern–Simons modified general relativity. Phys. Repts. 2009, 480, 1–55. [Google Scholar] [CrossRef] [Green Version]
- Jackiw, R.; Pi, S.Y. Chern-Ssimons modification of general relativity. Phys. Rev. D 2003, 68, 104012. [Google Scholar] [CrossRef]
- Alexander, S.; Martin, J. Birefringent gravitational waves and the consistency check of inflation. Phys. Rev. D 2005, 71, 063526. [Google Scholar] [CrossRef]
- Smith, T.L.; Erickcek, A.L.; Caldwell, R.R.; Kamionkowski, M. The Effects of Chern–Simons gravity on bodies orbiting the Earth. Phys. Rev. D 2008, 77, 024015. [Google Scholar] [CrossRef]
- Ali-Haimoud, Y. Revisiting the double–binary–pulsar probe of non–dynamical Chern–Simons gravity. Phys. Rev. D 2011, 83, 124050. [Google Scholar] [CrossRef]
- Canizares, P.; Gair, J.R.; Sopuerta, C.F. Testing Chern–Simons Modified Gravity with Gravitational–Wave Detections of Extreme–Mass–Ratio Binaries. Phys. Rev. D 2012, 86, 044010. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Ashtekar, A. Background Independent Quantum Gravity: A Status Report. Class. Quantum Gravity 2004, 21, R53. [Google Scholar] [CrossRef]
- Thiemann, T. Lectures on loop quantum gravity. Lect. Notes Phys. 2003, 631, 41. [Google Scholar]
- Freidel, L.; Minic, D.; Takeuchi, T. Quantum gravity, torsion, parity violation, and all that. Phys. Rev. D 2005, 72, 104002. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorta-Urra, A.; Bargueño, P. Homochirality: A Perspective from Fundamental Physics. Symmetry 2019, 11, 661. https://doi.org/10.3390/sym11050661
Dorta-Urra A, Bargueño P. Homochirality: A Perspective from Fundamental Physics. Symmetry. 2019; 11(5):661. https://doi.org/10.3390/sym11050661
Chicago/Turabian StyleDorta-Urra, Anaís, and Pedro Bargueño. 2019. "Homochirality: A Perspective from Fundamental Physics" Symmetry 11, no. 5: 661. https://doi.org/10.3390/sym11050661
APA StyleDorta-Urra, A., & Bargueño, P. (2019). Homochirality: A Perspective from Fundamental Physics. Symmetry, 11(5), 661. https://doi.org/10.3390/sym11050661