New Fixed Point Results for Modified Contractions and Applications
Abstract
:1. Introduction and Preliminaries
- (σ1)
- is non-decreasing;
- (σ2)
- for each sequence we have iff
- (σ3)
- there exist and such that
- (i)
- there exists in order that ;
- (ii)
- the mapping is continuous or;
- (iii)
- for each sequence in M in order that and then for all
2. Main Results
- (i)
- is α-admissible;
- (ii)
- there exists in order that ;
- (iii)
- is continuous or;
- (iv)
- for every in order that and for all then for all
- (i)
- there exists in order that ;
- (ii)
- is continuous or;
- (iii)
- for every in order that and for all then for all
- (iv)
- there exist and in order that:
3. Applications
- present some results for graphic contractions;
- ensure the existence a solution for a functional equation originating in dynamic programming.
3.1. Some Results for Graphic Contractions
- (i)
- preserves edges of G;
- (ii)
- there exists in order that ;
- (iii)
- is G-continuous or;
- (iv)
- G satisfies the property that is, for every with as and for all implies that for all
- (i)
- preserves edges of G;
- (ii)
- for
- (iii)
- G satisfies the property
3.2. Existence Theorem for a Solution of a Functional Equation
- (A1)
- there exists a function in order that if for all with , we have:
- (A2)
- for all implies that
- (A3)
- there exists in order that
- (A4)
- if is a sequence in in order that and , , then ,
- (A1∗)
- there exists a function in order that if for all with , we have:
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Isik, H.; Shatanawi, W. Fractional differential inclusions with a new class of set-valued contractions. arXiv 2019, arXiv:1807.05427. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive Type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Aydi, H. α-implicit contractive pair of mappings on quasi b-metric spaces and an application to integral equations. J. Nonlinear Convex Anal. 2016, 17, 2417–2433. [Google Scholar]
- Aydi, H.; Felhi, A.; Sahmim, S. On common fixed points for (α,ψ)-contractions and generalized cyclic contractions in b-metric-like spaces and consequences. J. Nonlinear Sci. Appl. 2016, 9, 2492–2510. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, E.; Samet, B. Fixed points for generalized (α,ψ)-contractions on generalized metric spaces. J. Inequal. Appl. 2014, 2014, 229. [Google Scholar] [CrossRef]
- Felhi, A.; Aydi, H.; Zhang, D. Fixed points for α-admissible contractive mappings via simulation functions. J. Nonlinear Sci. Appl. 2016, 9, 5544–5560. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Alsamir, H. Common fixed points for pairs of triangular (α)-admissible mappings. J. Nonlinear Sci. Appl. 2017, 10, 6192–6204. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Abodayeh, K.; Alsamir, H. Fixed point for mappings under contractive condition based on simulation functions and cyclic (α,β)-admissibility. J. Math. Anal. 2018, 9, 38–51. [Google Scholar]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W. Fixed Point Results for Geraghty Type Generalized F-contraction for Weak alpha-admissible Mapping in Metric-like Spaces. Eur. J. Pure Appl. Math. 2018, 11, 702–716. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W. Common Fixed Point Theorems for Generalized Geraghty (α,ψ,ϕ)-Quasi Contraction Type Mapping in Partially Ordered Metric-like Spaces. Axioms 2018, 7, 74. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W. Fixed Point Theorems for (α,k,θ)-Contractive Multi-Valued Mapping in b-Metric Space and Applications. Int. J. Math. Comput. Sci. 2018, 14, 263–283. [Google Scholar]
- Qawaqneh, H.; Md Noorani, M.S.; Shatanawi, W.; Aydi, H.; Alsamir, H. Fixed point results for multi-valued contractions in b-metric spaces and an application. Mathematics 2019, 7, 132. [Google Scholar] [CrossRef]
- Karapınar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Francisco Roldan Lopez de Hierro, A. w-interpolative Ciric-Reich-Rus type contractions. Mathematics 2019, 7, 75. [Google Scholar] [CrossRef]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Aydi, H.; Felhi, A.; Karapinar, E.; Sahmim, S. A Nadler-type fixed point theorem in dislocated spaces and applications. Miscolc Math. Notes 2018, 19, 111–124. [Google Scholar] [CrossRef]
- Beg, I.; Butt, A.R.; Radenović, S. The contraction principle for set valued mappings on a metric space with a graph. Comput. Math. Appl. 2010, 60, 1214–1219. [Google Scholar] [CrossRef]
- Bojor, F. Fixed point theorems for Reich type contractions on metric spaces with a graph. Nonlinear Anal. 2012, 75, 3895–3901. [Google Scholar] [CrossRef]
- Afshari, H.; Atapour, M.; Aydi, H. Generalized α-ψ-Geraghty multivalued mappings on b-metric spaces endowed with a graph. TWMS J. Appl. Eng. Math. 2017, 7, 248–260. [Google Scholar]
- Gopal, D.; Vetro, C.; Abbas, M.; Patel, D.K. Some coincidence and periodic points results in a metric space endowed with a graph and applications. Banach J. Math. Anal. 2015, 9, 128–140. [Google Scholar] [CrossRef]
- Souyah, N.; Aydi, H.; Abdeljawad, T.; Mlaiki, N. Best proximity point theorems on rectangular metric spaces endowed with a graph. Axioms 2019, 8, 17. [Google Scholar] [CrossRef]
- Abbas, M.; Nazir, T. Common fixed point of a power graphic contraction pair in partial metric spaces endowed with a graph. Fixed Point Theory Appl. 2013, 2013, 20. [Google Scholar] [CrossRef]
- Abbas, M.; Ali, B.; Vetro, C. A Suzuki type fixed point theorem for a generalized multivalued mapping on partial Hausdorff metric spaces. Topol. Appl. 2013, 160, 553–563. [Google Scholar] [CrossRef]
- Aydi, H.; Abbas, M.; Vetro, C. Common Fixed points for multivalued generalized contractions on partial metric spaces. Rev. Real Acad. Cienc. Exact. Fis. Nat. Ser. A Mat. 2014, 108, 483–501. [Google Scholar] [CrossRef]
- Bhakta, T.C.; Mitra, S. Some existence theorems for functional equations arising in dynamic programming. J. Math. Anal. Appl. 1984, 98, 348–362. [Google Scholar] [CrossRef]
- Bellman, R.; Lee, E.S. Functional equations in dynamic programming. Aequ. Math. 1978, 17, 1–18. [Google Scholar] [CrossRef]
- Vetro, F. F-contractions of Hardy-Rogers Type and application to multistage decision processes. Nonlinear Anal. Model. Control 2016, 21, 531–546. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Işık, H.; Aydi, H.; Md Noorani, M.S.; Qawaqneh, H. New Fixed Point Results for Modified Contractions and Applications. Symmetry 2019, 11, 660. https://doi.org/10.3390/sym11050660
Işık H, Aydi H, Md Noorani MS, Qawaqneh H. New Fixed Point Results for Modified Contractions and Applications. Symmetry. 2019; 11(5):660. https://doi.org/10.3390/sym11050660
Chicago/Turabian StyleIşık, Hüseyİn, Hassen Aydi, Mohd Salmi Md Noorani, and Haitham Qawaqneh. 2019. "New Fixed Point Results for Modified Contractions and Applications" Symmetry 11, no. 5: 660. https://doi.org/10.3390/sym11050660
APA StyleIşık, H., Aydi, H., Md Noorani, M. S., & Qawaqneh, H. (2019). New Fixed Point Results for Modified Contractions and Applications. Symmetry, 11(5), 660. https://doi.org/10.3390/sym11050660