Some Symmetric Identities for the Multiple (p, q)-Hurwitz-Euler eta Function
Abstract
:1. Introduction
2. Carlitz’s Form Higher-Order -Euler Numbers and Polynomials
3. Multiple -Hurwitz-Euler eta Function
4. Symmetric Identities for the Multiple -Hurwitz-Euler eta Function
5. Zeros of the Higher-Order -Euler Polynomials
6. Conclusions and Future Developments
Author Contributions
Funding
Conflicts of Interest
References
- Araci, S.; Duran, U.; Acikgoz, M.; Srivastava, H.M. A certain (p, q)-derivative operato rand associated divided differences. J. Ineq. Appl. 2016, 2016. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions. In Encyclopedia of Mathematics and Its Applications 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Carlitz, L. Expansion of q-Bernoulli numbers and polynomials. Duke Math. J. 1958, 25, 355–364. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. The Multiple Hurwitz Zeta Function and the Multiple Hurwitz-Euler Eta Function. Taiwan. J. Math. 2011, 15, 501–522. [Google Scholar] [CrossRef]
- Choi, J.; Anderson, P.J.; Srivastava, H.M. Carlitz’s q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwiz zeta functions. Appl. Math. Comput. 2009, 215, 1185–1208. [Google Scholar]
- Guariglia, E.; Silvestrov, S. A functional equation for the Riemann zeta fractional derivative. AIP Conf. Proc. 2017, 1798, 020063. [Google Scholar]
- Guariglia, E. Fractional derivative of the Riemann zeta function. In Fractional Dynamics; De Gruyter: Berlin, Germany, 2015; pp. 357–368. [Google Scholar]
- He, Y. Symmetric identities for Carlitz’s q-Bernoulli numbers and polynomials. Adv. Diff. Equ. 2013, 246, 10. [Google Scholar] [CrossRef]
- Kim, D.; Kim, T.; Seo, J.-J. Identities of symmetric for (h, q)-extension of higher-order Euler polynomials. Appl. Math. Sci. 2014, 8, 3799–3808. [Google Scholar]
- Kim, T. Barnes type multiple q-zeta function and q-Euler polynomials. J. Phys. A Math. Theor. 2010, 43, 255201. [Google Scholar] [CrossRef]
- Li, C.; Dao, X.; Guo, P. Fractional derivatives in complex planes. Nonlinear Anal. 2009, 71, 1857–1869. [Google Scholar] [CrossRef]
- Ortigueira, M.D. A coherent approach to non-integer order derivatives. Signal Process. 2006, 86, 2505–2515. [Google Scholar] [CrossRef] [Green Version]
- Ryoo, C.S. (p, q)-analogue of Euler zeta function. J. Appl. Math. Inform. 2017, 35, 113–120. [Google Scholar] [CrossRef]
- Simsek, Y. Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function. J. Math. Anal. Appl. 2006, 324, 790–804. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi Polynomials. Appl. Math. Inform. Sci. 2011, 5, 390–444. [Google Scholar]
- Kurt, V. A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials. Appl. Math. Sci. 2009, 3, 53–56. [Google Scholar]
- Agarwal, R.P.; Kang, J.Y.; Ryoo, C.S. Some properties of (p, q)-tangent polynomials. J. Comput. Anal. Appl. 2018, 24, 1439–1454. [Google Scholar]
- Duran, U.; Acikgoz, M.; Araci, S. On (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials. J. Comput. Theor. Nanosci. 2016, 13, 7833–7846. [Google Scholar] [CrossRef]
- Ryoo, C.S. Some symmetric identities for (p, q)-Euler zeta function. J. Comput. Anal. Appl. 2019, 27, 361–366. [Google Scholar]
- Ryoo, C.S. On the generalized Barnes type multiple q-Euler polynomials twisted by ramified roots of unity. Proc. Jangjeon Math. Soc. 2010, 13, 255–263. [Google Scholar]
Degree n | Real Zeros | Complex Zeros | Real Zeros | Complex Zeros |
---|---|---|---|---|
1 | 1 | 0 | 0 | 1 |
2 | 2 | 0 | * | * |
3 | 1 | 2 | 1 | 2 |
4 | 2 | 2 | * | * |
5 | 1 | 4 | 1 | 4 |
6 | 2 | 4 | 2 | 4 |
7 | 1 | 6 | 1 | 6 |
8 | * | * | * | * |
9 | 1 | 8 | 1 | 8 |
10 | 2 | 8 | 2 | 8 |
11 | 1 | 10 | 1 | 10 |
12 | 2 | 10 | 2 | 10 |
13 | 1 | 12 | 1 | 12 |
14 | * | * | 2 | 12 |
15 | 1 | 14 | 1 | 14 |
16 | * | * | * | * |
17 | 1 | 16 | 1 | 16 |
Degree n | x |
---|---|
1 | 0.0723976 |
2 | * |
3 | 0.206956 |
4 | * |
5 | 0.258552 |
6 | −0.163912, 0.273465 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, K.-W.; Ryoo, C.S. Some Symmetric Identities for the Multiple (p, q)-Hurwitz-Euler eta Function. Symmetry 2019, 11, 645. https://doi.org/10.3390/sym11050645
Hwang K-W, Ryoo CS. Some Symmetric Identities for the Multiple (p, q)-Hurwitz-Euler eta Function. Symmetry. 2019; 11(5):645. https://doi.org/10.3390/sym11050645
Chicago/Turabian StyleHwang, Kyung-Won, and Cheon Seoung Ryoo. 2019. "Some Symmetric Identities for the Multiple (p, q)-Hurwitz-Euler eta Function" Symmetry 11, no. 5: 645. https://doi.org/10.3390/sym11050645