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Abstract

:

The main purpose of this paper is to find some interesting symmetric identities for the (p,q)-Hurwitz-Euler eta function in a complex field. Firstly, we define the multiple (p,q)-Hurwitz-Euler eta function by generalizing the Carlitz’s form (p,q)-Euler numbers and polynomials. We find some formulas and properties involved in Carlitz’s form (p,q)-Euler numbers and polynomials with higher order. We find new symmetric identities for multiple (p,q)-Hurwitz-Euler eta functions. We also obtain symmetric identities for Carlitz’s form (p,q)-Euler numbers and polynomials with higher order by using symmetry about multiple (p,q)-Hurwitz-Euler eta functions. Finally, we study the distribution and symmetric properties of the zero of Carlitz’s form (p,q)-Euler numbers and polynomials with higher order.
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1. Introduction


The area of the specific functions like the gamma and beta functions, the hypergeometric functions, special polynomials, the zeta functions and the area of series such as q-series, and series representations are a rapidly developing area in advanced mathematics (see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]). Many q-extensions of specific functions and polynomials have been studied (see [1,3,6,7,8,9,10,13,16]). Srivastava [15] discussed some properties and q-extensions of the Bernoulli polynomials, Euler polynomials, and Genocchi polynomials. Choi, Anderson and Srivastava have developed the q-extension of the Riemann zeta function and functions related to the Riemann zeta function (see [5]). Choi and Srivastava presented a generalized Hurwitz formula and Hurwitz-Euler eta function (see [4]). Recently, many authors have developed (p,q)-extensions of the special functions, Riemann zeta function and related functions (see [1,13,17,18,19]). The symmetry of special polynomials is also actively studied (see [8,9,19]).



We use this


∑m1=0n⋯∑mr=0n=∑m1,⋯,mr=0n.











We know the binomial formula as


(1−a)n=∑i=0nni(−a)i,whereni=n(n−1)⋯(n−i+1)i!,








and


1(1−a)n=(1−a)−n=∑i=0∞−ni(−a)i=∑i=0∞n+i−1iai.











Choi and Srivastava [4] constructed and made formulas about the multiple Hurwitz-Euler eta function ηr(s,a) defined by following r-ple series:


ηr(s,a)=∑k1,⋯,kr=0∞(−1)k1+⋯+kr(k1+⋯+kr+a)s,(Re(s)>0;a>0;r∈N),








where N is the set of natural numbers. It is known that ηr(s,a) can be analytically continued to be all complex s-plane (see [4]). The (p,q)-number was defined as


[n]p,q=pn−qnp−q=pn−1+pn−2q+pn−3q2+⋯+p2qn−3+pqn−2+qn−1.











It can be seen that the (p,q)-number contains a symmetric property, and this number is q-number when p=1. In particular, we can see limq→1[n]p,q=n with p=1. Since [n]p,q=pn−1[n]qp, we observe that p-numbers and (p,q)-numbers are different. In other words, by substituting q by qp in the q-number, we could not obtain a (p,q)-number. Therefore, much research has been conducted in the area of special functions by using (p,q)-number (see [1,13,18,19]). In this article, the (p,q)-extension of the multiple form of Hurwitz-Euler eta function can be defined as follows: For s,x∈C with Re(x)>0, the multiple (p,q)-Hurwitz-Euler eta function ηp,q(r)(s,x) is defined by


ηp,q(r)(s,x)=[2]qr∑m1,…,mr=0∞(−1)m1+⋯+mrqm1+⋯+mr[m1+⋯+mr+x]p,qs.











The aim of this paper is to introduce and study a new some generalizations of the Carlitz’s form higher order q-Euler numbers and polynomials, the multiple q-Euler zeta function, and the multiple Hurwitz q-Euler zeta function. We call them Carlitz’s type higher-order (p,q)-Euler numbers and polynomials, the multiple (p,q)-Euler zeta function, and the multiple (p,q)-Hurwitz-Euler eta function. The paper is structured as follows. In Section 2 we define Carlitz’s type higher-order (p,q)-Euler numbers and (p,q)-Euler polynomials and induce some of their properties involving elementary properties, distribution relation, property of complement, and so on. In Section 3, by using the Carlitz’s type higher-order (p,q)-Euler numbers and polynomials, the multiple (p,q)-Euler zeta function and the multiple (p,q)-Hurwitz-Euler eta function are defined. We also present some connection formulae between the Carlitz’s type higher-order (p,q)-Euler numbers and polynomials, the multiple (p,q)-Euler zeta function, and the multiple (p,q)-Hurwitz-Euler eta function. In Section 4 we give several symmetric identities about the multiple (p,q)-Hurwitz-Euler eta function and Carlitz’s type higher-order (p,q)-Euler numbers and polynomials. In Section 5, we investigate the distribution and symmetry of the zero of Carlitz’s type higher-order (p,q)-Euler polynomials using a computer. Our paper ends with Section 6, where the conclusions and future developments of this work are presented.



Definition 1.

The classical higher-order Euler numbers denoted by En(r) and Euler polynomials denoted by En(r)(x) are defined as the below generating functions


2et+1r=∑n=0∞En(r)tnn!,(|t|<π),








and


2et+1rext=∑n=0∞En(r)(x)tnn!,(|t|<π),








respectively (see [15]).





Definition 2.

For 0<q<p≤1, the Carlitz’s type (p,q)-Euler polynomials denoted by En,p,q(x) are defined as the below generating function (see [13])


∑n=0∞En,p,q(x)tnn!=[2]q∑m=0∞(−1)mqme[m+x]p,qt.














2. Carlitz’s Form Higher-Order (p,q)-Euler Numbers and Polynomials


First, we think the Carlitz’s form with high-order (p,q)-Euler numbers and polynomials as follows:

Definition 3.

For r∈N, the high-order (p,q)-Euler polynomials denoted by En,p,q(r)(x) are defined like the generating function:


∑n=0∞En,p,q(r)(x)tnn!=[2]qr∑m1,⋯,mr=0∞(−1)m1+⋯+mrqm1+⋯+mre[m1+⋯+mr+x]p,qt.



(1)







If x=0,En,p,q(r)=En,p,q(r)(0) are called the higher-order (p,q)-Euler numbers En,p,q(r). Note that if r=1, then En,p,q(r)=En,p,q and En,p,q(r)(x)=En,p,q(x). Observe that if p=1,q→1, then En,p,q(r)→En(r) and En,p,q(r)(x)→En(r)(x).





Definition 4.

For r∈N, the (h,p,q)-Euler polynomials with high-order denoted by En,p,q(r,h)(x) are defined as the below generating function:


∑n=0∞En,p,q(r,h)(x)tnn!=[2]qr∑m1,⋯,mr=0∞(−q)m1+⋯+mrph(m1+⋯+mr)e[m1+⋯+mr+x]p,qt.



(2)







If x=0,En,p,q(r,h)=En,p,q(r,h)(0) is called (h,p,q)-Euler numbers with higher-order denoted by En,p,q(r). Remark that if h=0, then En,p,q(r,h)=En,p,q(r) and En,p,q(r,h)(x)=En,p,q(r)(x). We see that if r=1, then En,p,q(r,h)=En,p,q(h) and En,p,q(r,h)(x)=En,p,q(h)(x) (see [13]). Observe that if p=1,q→1, then En,p,q(r,h)→En(r) and En,p,q(r,h)(x)→En(r)(x).



By (1) and (2), we know that


En,p,q(r)(x+y)=∑i=0nnip(n−i)xqyiEi,p,q(r,n−i)(x)[y]p,qn−i,En,p,q(r)(x)=∑i=0nniqxi[x]p,qn−iEi,p,q(r,n−i).



(3)









Theorem 1.

For r∈N, we have


En,p,q(r)(x)=[2]qr∑m1,⋯,mr=0∞(−1)m1+⋯+mrqm1+⋯+mr[m1+⋯+mr+x]p,qn=[2]qr(p−q)n∑l=0nnl(−1)lqxlp(n−l)x11+ql+1pn−lr.













Proof. 

When we use the Taylor series expansion of e[x]p,qt, we can get


∑l=0∞El,p,q(r)(x)tll!=[2]qr∑m1,⋯,mr=0∞(−1)m1+⋯+mrqm1+⋯+mre[m1+⋯+mr+x]p,qt=∑l=0∞[2]qr∑m1,⋯,mr=0∞(−1)m1+⋯+mrqm1+⋯+mr[m1+⋯+mr+x]p,qltll!.











The first part of the theorem follows when we compare the coefficients of tll! in the above equation. By (p,q)-numbers and binomial expansion, we also note that


En,p,q(r)(x)=[2]qr∑m1,⋯,mr=0∞(−1)m1+⋯+mrqm1+⋯+mr[m1+⋯+mr+x]p,qn=[2]qr∑m1,⋯,mr=0∞(−1)m1+⋯+mrqm1+⋯+mrpm1+⋯+mr+x−qm1+⋯+mr+xp−qn=[2]qr(p−q)n∑l=0nnl(−1)lqxlp(n−l)x×∑m1,⋯,mr=0∞(−1)m1+⋯+mrq(l+1)(m1+⋯+mr)p(n−l)(m1+⋯+mr)=[2]qr(p−q)n∑l=0nnl(−1)lqxlp(n−l)x11+ql+1pn−lr.











We finish the proof of Theorem 1. □





Theorem 2.

For r∈N, we get


En,p,q(r)(x)=[2]qr∑m=0∞r+m−1m(−1)mqm[m+x]p,qn.



(4)









Proof. 

By Taylor-Maclaurin series expansion of (1−a)−n, we have


11+ql+1pn−lr=∑m=0∞m+r−1m(−1)m(ql+1pn−l)m.











Also, by Theorem 1 and binomial expansion, one can obtain the desired result immediately. □







For d∈N with d≡1(mod2), by Theorem 1 we can show


En,p,q(r)(x)=[2]qr(p−q)n∑l=0nnl(−1)lqxlp(n−l)x∑a1,⋯,ar=0d−1∑m1,⋯,mr=0∞(−1)a1+⋯+ar×(−1)m1+⋯+mrq(l+1)(a1+dm1+⋯+ar+dmr)p(n−l)(a1+dm1+⋯+ar+dmr).











Theorem 3.

(Distribution relation of (p,q)-Euler polynomials with higher-order). For d∈N with d≡1(mod2), we have


En,p,q(r)(x)=[2]qr[2]qdr[d]p,qn∑a1,⋯,ar=0d−1(−q)a1+⋯+arEn,pd,qd(r)a1+⋯+ar+xd.













Proof. 

Since


En,pd,qd(r)a1+⋯+ar+xd=[2]qdr(pd−qd)n∑l=0nnl(−1)lql(a1+⋯+ar+x)p(n−l)(a1+⋯+ar+x)11+qd(l+1)pd(n−l)r,








we have


∑a1,⋯,ar=0d−1(−q)a1+⋯+arEn,pd,qd(r)a1+⋯+ar+xd=[2]qdr(pd−qd)n∑l=0nnl(−1)lqlxp(n−l)x×∑a1,⋯,ar=0d−1(−1)a1+⋯+arqa1+⋯+arql(a1+⋯+ar)p(n−l)(a1+⋯+ar)11+qd(l+1)pd(n−l)r.











Hence, we derive


[2]qr[2]qdr[d]p,qn∑a1,⋯,ar=0d−1(−q)a1+⋯+arEn,pd,qd(r)a1+⋯+ar+xd=[2]qr(p−q)n∑l=0nnl(−1)lqxlp(n−l)x11+ql+1pn−lr.











We prove Theorem 3. □






3. Multiple (p,q)-Hurwitz-Euler eta Function


We define multiple (p,q)-Hurwitz-Euler eta function. This function makes (p,q)-Euler polynomials at negative integers with higher-order. Choi and Srivastava [4] defined ηr(s,a) by means of


ηr(s,a)=∑k1,⋯,kr=0∞(−1)k1+⋯+kr(k1+⋯+kr+a)s,(Re(s)>0;a>0;r∈N).











It is known that ηr(s,a) can be continued analytically to be all complex s-plane (see [4]). The (p,q)-extension of ηr(s,a) can be defined as follows:

Definition 5.

For s,x∈C with Re(x)>0, the multiple (p,q)-Hurwitz-Euler eta function ηp,q(r)(s,x) is defined as


ηp,q(r)(s,x)=[2]qr∑m1,…,mr=0∞(−1)m1+⋯+mrqm1+⋯+mr[m1+⋯+mr+x]p,qs.











Observe that when p=1,q→1, then 2rηp,q(r)(s,a)=ηr(s,a).



Let


Fp,q(r)(t,x)=∑n=0∞En,p,q(r)(x)tnn!=[2]qr∑m1,…,mr=0∞(−1)m1+⋯+mrqm1+⋯+mre[m1+⋯+mr+x]p,qt.



(5)









Theorem 4.

For r∈N, we get


ηp,q(r)(s,x)=1Γ(s)∫0∞Fp,q(r)(x,−t)ts−1dt,



(6)




where Γ(s)=∫0∞zs−1e−zdz.





Proof. 

From (5) and Definition 5, we get


ηp,q(r)(s,x)=[2]qr∑m1,⋯,mr=0∞(−1)m1+⋯+mrqm1+⋯+mr[m1+⋯+mr+x]p,qs=[2]qr1Γ(s)∑m1,⋯,mr=0∞(−1)m1+⋯+mrqm1+⋯+mr[m1+⋯+mr+x]p,qs∫0∞zs−1e−zdz=[2]qrΓ(s)∑m1,⋯,mr=0∞(−1)m1+⋯+mrqm1+⋯+mr∫0∞e[m1+⋯+mr+x]p,qtts−1dt=1Γ(s)∫0∞Fp,q(r)(x,−t)ts−1dt.











We are finished Theorem 4. □







The value of multiple (p,q)-Hurwitz-Euler eta function ηp,q(r)(s,x) at negative integers is given explicitly by the following theorem:



Theorem 5.

Let n∈N. Then we obtain


ηp,q(r)(−n,x)=En,p,q(r)(x).













Proof. 

Again, by (5) and (6), we have


ηp,q(r)(s,x)=1Γ(s)∫0∞Fp,q(r)(x,−t)ts−1dt=1Γ(s)∑m=0∞Em,p,q(r)(x)(−1)mm!∫0∞tm+s−1dt.



(7)







We note that


Γ(−n)=∫0∞e−zz−n−1dz=limz→02πi1n!ddzn(zn+1e−zz−n−1)=2πi(−1)nn!.



(8)







For n∈N, let us take s=−n in (7). Then, by (7), (8), and Cauchy residue theorem, we have


ηp,q(r)(−n,x)=lims→−n1Γ(s)∑m=0∞Em,p,q(r)(x)(−1)mm!∫0∞tm−n−1dt=2πilims→−n1Γ(s)En,p,q(r)(x)(−1)nn!=2πi12πi(−1)nn!En,p,q(r)(x)(−1)nn!=En,p,q(r)(x).











The proof of Theorem 5 is finished. □





By (4), we have


∑n=0∞En,p,q(r)tnn!=[2]qr∑m=0∞m+r−1m(−1)mqme[m]p,qt.











From Taylor series of e[m]p,qt in the above formula, we can get


∑n=0∞En,p,q(r)tnn!=∑n=0∞[2]qr∑m=0∞m+r−1m(−1)mqm[m]p,qntnn!.











If we compare coefficients tnn!, then we know


En,p,q(r)=[2]qr∑m=0∞m+k−1m(−1)mqm[m]p,qn.



(9)







By using (9), we define multiple (p,q)-Euler zeta function like below formula:

Definition 6.

For s∈C, we define


ζp,q(r)(s)=[2]qr∑m=1∞m+r−1m(−1)mqm[m]p,qs.



(10)











The function ζp,q(r)(s) makes the number En,p,q(r) in negative integers. Instead of s, s=−n for n∈N into (10), and using (9), we can obtain the below theorem:

Theorem 6.

Let n∈N, We have


ζp,q(r)(−n)=En,p,q(r).
















4. Symmetric Identities for the Multiple (p,q)-Hurwitz-Euler eta Function


Let w1,w2∈N where, w1≡1(mod2), w2≡1(mod2). For r∈N and n∈Z+, we get symmetry identities about the multiple (p,q)-Hurwitz-Euler eta function.



Theorem 7.

Let w1,w2 be natural numbers, where w1≡1(mod2), w2≡1(mod2). Then we obtain


[w2]p,qs[2]qw2r∑j1,⋯,jr=0w1−1(−1)∑l=1rjlqw2∑l=1rjl×ηpw1qw1(r)(s,w2x+w2w1(j1+⋯+jr))=[w1]p,qs[2]qw1r∑j1,⋯,jr=0w2−1(−1)∑l=1rjlqw1∑l=1rjl×ηpw2,qw2(r)(s,w1x+w1w2(j1+⋯+jr)).



(11)









Proof. 

We know that [xy]q=[x]qy[y]q for any x,y∈C. Hence, using w2x+w2w1(j1+⋯+jr) instead of x and replacing by qw1 and pw1 instead of q and p in (11), respectively, we induce the next result


1[2]qw1rηpw1qw1(r)(s,w2x+w2w1(j1+⋯+jr))=∑m1,⋯,mr=0∞(−1)m1+⋯+mrqw1m1+⋯+w1mr[m1+⋯+mr+w2x+w2w1(j1+⋯+jr)]pw1,qw1s=∑m1,⋯,mk=0∞(−1)m1+⋯+mrqw1m1+⋯+w1mrw1(m1+⋯+mr)+w1w2x+w2(j1+⋯+jr)w1pw1,qw1s=∑m1,⋯,mr=0∞(−1)m1+⋯+mrqw1m1+⋯+w1mr[w1(m1+⋯+mk)+w1w2x+w2(j1+⋯+jk)]p,qs[w1]p,qs=[w1]p,qs∑m1,⋯,mk=0∞(−1)m1+⋯+mrqw1m1+⋯+w1mr[w1(m1+⋯+mr)+w1w2x+w2(j1+⋯+jr)]p,qs=[w1]p,qs∑m1,⋯,mk=0∞∑i1,⋯,ik=0w2−1(−1)m1+⋯+mrqw1m1+⋯+w1mr[w1(m1+⋯+mr)+w1w2x+w2(j1+⋯+jr)]p,qs=[w1]p,qs∑m1,⋯,mr=0∞∑i1,⋯,ir=0w2−1(−1)∑j=1r(w2mj+ij)qw1∑j=1r(w2mj+ij)×[w1(w2m1+i1)+⋯+w1(w2mr+ir)+w1w2x+w2(j1+⋯+jr)]p,qs−1=[w1]p,qs∑m1,⋯,mr=0∞∑i1,⋯,ir=0w2−1(−1)∑j=1rmj(−1)∑j=1rijqw1w2∑j=1rmjqw1∑j=1rij×[w1w2(x+m1+⋯+mr)+w1(i1+⋯+ir)+w2(j1+⋯+jr)]p,qs−1.



(12)







Thus, from (12), we see the following equation.


[w2]p,qs[2]qw1r∑j1,⋯,jr=0w1−1(−1)j1+⋯+jrqw2(j1+⋯+jr)ηpw1,qw1(r)(s,w2x+w2w1(j1+⋯+jr))=[w1]p,qs[w2]p,qs∑m1,⋯,mr=0∞∑i1,⋯,ir=0w2−1∑j1,⋯,jr=0w1−1(−1)∑l=1r(jl+il+ml)qw1w2∑l=1rml×qw1∑l=1rilqw2∑l=1rjl×[w1w2(x+m1+⋯+mr)+w1(i1+⋯+ir)+w2(j1+⋯+jr)]p,qs−1



(13)







By using the same method as (13), we have


[w1]p,qs[2]qw2r∑j1,⋯,jr=0w2−1(−1)j1+⋯+jrqw1(j1+⋯+jr)ηpw2,qw2(r)(s,w1x+w1w2(j1+⋯+jr))=[w1]p,qs[w2]p,qs∑m1,⋯,mk=0∞∑j1,⋯,jr=0w2−1∑i1,⋯,ir=0w1−1(−1)∑l=1r(jl+il+ml)×qw1w2∑l=1rmlqw2∑l=1rilqw1∑l=1rjl×[w1w2(x+m1+⋯+mr)+w1(j1+⋯+jr)+w2(i1+⋯+ir)]p,qs−1



(14)







Therefore, by (13) and (14), we complete the proof Theorem 7. □





Taking w2=1 in Theorem 7, we obtain the below corollary.



Corollary 1.

Let w1 be natural numbers, where w1≡1(mod2). For r∈N and n∈Z+, we obtain


ηn,p,q(r)s,w1x=[2]qr[2]qw1r[w1]p,qs∑j1,⋯,jr=0w1−1(−1)∑l=1rjlqw2∑l=1rjl×ηn,pw1,qw1(r)s,x+j1+⋯+jrw1.



(15)









If p=1,q→1 in above Corollary 1, then we can see the below corollary.



Corollary 2.

Let m∈N. m≡1(mod2). For r∈N and n∈Z+, we obtain


ηrs,x=1ms∑j1,⋯,jr=0m−1(−1)j1+⋯+jrηrs,x+j1+⋯+jrm.



(16)









For r∈N and n∈Z+, we see symmetry identities about higher-order (p,q)-Euler polynomials.



Theorem 8.

Let w1,w2 be natural numbers with w1≡1(mod2), w2≡1(mod2). For r∈N and n∈Z+, we obtain


[w1]p,qn[2]qw2r∑j1,⋯,jr=0w1−1(−1)∑l=1rjlqw2∑l=1rjl×En,pw1,qw1(r)w2x+w2w1(j1+⋯+jr)=[w2]p,qn[2]qw1r∑j1,⋯,jr=0w2−1(−1)∑l=1rjlqw1∑l=1rjl×En,pw2,qw2(r)w1x+w1w2(j1+⋯+jr).



(17)









Proof. 

Using Theorems 5 and 7, we see easily the Theorem 8. □





Taking w2=1 in Theorem 8, we have the below corollary.



Corollary 3.

Let w1 be the natural number with w1≡1(mod2). For r∈N and n∈Z+, we obtain


En,pw1,qw1(r)(w1x)=[2]qr[2]qw1r[w1]p,qn∑j1,⋯,jr=0w1−1(−1)∑l=1rjlqw2∑l=1rjl×En,pw1,qw1(r)s,x+j1+⋯+jrw1.



(18)









If p=1,q→1 in the above Corollary, then we get the another Corollary.



Corollary 4.

Let m be the natural number, where m≡1(mod2). Let r∈N and n∈Z+, we see


En(r)(x)=mn∑j1,⋯,jr=0m−1(−1)j1+⋯+jrEn(r)x+j1+⋯+jrm.



(19)









By (3), we have


∑j1,⋯,jr=0w1−1(−1)∑l=1rjlqw2∑l=1rjl×En,pw1,qw1(r)w2x+w2w1(j1+⋯+jk)=∑j1,⋯,jr=0w1−1(−1)∑l=1rjlqw2∑l=1rjl×∑i=0nniqw2(n−i)(j1+⋯+jr)pw1w2xiEn−i,pw1,qw1(r,i)(w2x)w2w1(j1+⋯+jr)pw1,qw1i=∑j1,⋯,jr=0w1−1(−1)∑l=1rjlpw2∑l=1rjl×∑i=0nniqw2(n−i)∑l=1rjlpw1w2xiEn−i,pw1,qw1(r,i)(w2x)[w2]p,q[w1]p,qij1+⋯+jrpw1,qw1i



(20)




therefore, we can see the below theorem.



Theorem 9.

Let w1,w2∈N. Let w1≡1(mod2), w2≡1(mod2). Let r∈N and n∈Z+, we get


∑j1,⋯,jr=0w1−1(−1)∑l=1rjlqw2∑l=1rjl×En,pw1,qw1(r)w2x+w2w1(j1+⋯+jr)=∑i=0nni[w2]p,qi[w1]p,q−ipw1w2xiEn−i,pw1,qw1(r,i)(w2x)×∑j1,⋯,jr=0w1−1(−1)∑l=1rjlqw2(n−i+1)∑l=1rjl[j1⋯+jr]pw2,qw2i.











For all different integers n≥0, let


Sn,i,p,q(r)(w)=∑j1,⋯,jr=0w−1(−1)∑l=1rjlq(n−i+1)∑l=1rjl[j1⋯+jk]p,qi.











This sum Sn,i,p,q(k)(w) is called the alternating (p,q)-power sums.





By above Theorem 9, we get the result


[2]qw2r[w1]p,qn∑j1,⋯,jr=0w1−1(−1)∑l=1rjlqw2∑l=1rjl×En,pw1,qw1(r)w2x+w2w1(j1+⋯+jr)=[2]qw2r∑i=0nni[w2]p,qi[w1]p,qn−ipw1w2xiEn−i,pw1,qw1(r,i)(w2x)Sn,i,pw2,qw2(r)(w1).



(21)







By using the same method as in (21), we have


[2]qw1r[w2]p,qn∑j1,⋯,jr=0w2−1(−1)∑l=1rjlqw1∑l=1kjl×En,pw2,qw2(r)w1x+w1w2(j1+⋯+jr)=[2]qw1r∑i=0nni[w1]p,qi[w2]p,qn−ipw1w2xiEn−i,pw2,qw2(r,i)(w1x)Sn,i,pw1,qw1(r)(w2).



(22)







So we see the following result using (21) and (22) and Theorem 3.



Theorem 10.

Let w1,w2 be the natural numbers, where w1≡1(mod2), w2≡1(mod2). Let r∈N and n∈Z+, we can see


[2]qw1r∑i=0nni[w1]p,qi[w2]p,qn−ipw1w2xiEn−i,pw2,qw2(r,i)(w1x)Sn,i,pw1,qw1(r)(w2)=[2]qw2r∑i=0nni[w2]p,qi[w1]p,qn−ipw1w2xiEn−i,pw1,qw1(r,i)(w2x)Sn,i,pw2,qw2(r)(w1).













Using Theorem 10, we induce the symmetric identity (p,q)-Euler numbers En,p,q(r) for the higher-order in complex field.



Corollary 5.

Let w1,w2 be the natural numbers which have w1≡1(mod2), w2≡1(mod2). For k∈N and n∈Z+, we get


[2]qw1r∑i=0nni[w1]p,qi[w2]p,qn−ipw1w2xiSn,i,pw1,qw1(r)(w2)En−i,pw2,qw2(r,i)=[2]qw2r∑i=0nni[w2]p,qi[w1]p,qn−ipw1w2xiSn,i,pw2,qw2(r)(w1)En−i,pw1,qw1(r,i).














5. Zeros of the Higher-Order (p,q)-Euler Polynomials En,p,q(r)(x)=0


If it is difficult to find solutions of equations, visualizing distributions of solutions using a computer can help to find regular patterns of solutions. These are particularly interesting because it is hard to approach theoretically. Therefore, the work of the last section is of interest to us. Based on these results, we suggest a few unsolved problems.



The values of the En,p,q(r)(x) are given by


E0,p,q(r)(x)=1,E1,p,q(r)(x)=[2]qrpx11+pqr−qx11+q2rp−q,E2,p,q(r)(x)=[2]qrp2x11+p2qr−2pxqx11+pq2r+q2x11+q3r(p−q)2,E3,p,q(r)(x)=[2]qrp3x11+p3qr−3p2xqx11+p2q2r+3pxq2x11+pq3r−q3x11+q4r(p−q)3.











We see that the numerical results about approximate solutions of zeros of En,p,q(r)(x)=0 are in Table 1 and Table 2. In Table 1, the numbers of zeros of En,p,q(r)(x)=0 are listed about a fixed p=12 and q=110.



The ∗ mark in inside of Table 1 means that there is no solution of En,p,q(r)(x)=0. It is possible to visualize the zeros of En,p,q(r)(x)=0 using computer graphics. The zeros of En,p,q(r)(x)=0, where x∈C are visualized in Figure 1.



In Figure 1 (top-left), we chose r=7,n=10,p=1/2 and q=1/10. In Figure 1 (top-right), we chose r=7,n=20,p=1/2 and q=1/10. In Figure 1 (bottom-left), we chose r=7,n=30,p=1/2 and q=1/10. In Figure 1 (bottom-right), we chose r=7,n=40,p=1/2 and q=1/10. We can see that distribution of zeroes of En,p,q(r)(x)=0 is very regular. Therefore, the theoretical prediction of the regularity of distributions of the zeros of En,p,q(r)(x)=0 will remain as future research problems (Table 1).



Now, we have the numerical solution satisfying higher-order Euler polynomials En,p,q(r)(x)=0 for x∈R. The numerical solutions of the higher-order Euler polynomials En,p,q(r)(x)=0 are listed in Table 2 about a fixed r=3,p=12, and q=110 and different value of n.



The ∗ mark in Table 2 means that there is no solution of En,p,q(r)(x)=0.




6. Conclusions and Future Developments


This paper introduced the Carlitz’s form higher-order Euler numbers and polynomials. We have induced some formulas about the Carlitz’s form Euler numbers and polynomials with high-order. Symmetric identities about Carlitz’s form Euler numbers and polynomials with high-order are also gained. In addition, the result of [19] is a special case of r=1, which can be induced from our paper. We make the following conjectures by numerical experiments:

Conjecture 1.

Prove or disprove that En,p,q(r)(x),x∈C, has Im(x)=0 reflection symmetry analytic complex functions. Furthermore, En,p,q(r)(x) has Re(x)=a reflection symmetry for a∈R.







It have been checked about many values of n. It is still unknown when the conjecture 1 is true or false about each value n (see Figure 1).



In Table 1, there is no solution of that the Carlitz’s form (p,q)-Euler polynomials with higher-order is 0. Find such n so that there is no solution. If the Carlitz’s form (p,q)-Euler polynomials with higher-order has solutions, it is doubtful whether it has distinct solutions.



Conjecture 2.

Prove or disprove that En,p,q(r)(x)=0 has n distinct solutions.





We use the following symbols. REn,p,q(r)(x) denotes the number of real zeros of En,p,q(r)(x)=0 on the real plane Im(x)=0 and CEn,p,q(r)(x) denotes the number of complex zeros of En,p,q(r)(x)=0. We can check REn,p,q(r)(x)=n−CEn,p,q(r)(x)(see Table 1 and Table 2) because n is the degree of the polynomial En,p,q(r)(x).



Also, when the Carlitz’s form higher-order (p,q)-Euler polynomials is 0, if the equation has solutions, we have the following question:

Conjecture 3.

Prove or disprove that


REn,p,q(r)(x)=1,ifn=odd,2,ifn=even.















We expect that the research in this direction will be a new approach using numerical methods for the study of Carlitz’s form Euler polynomials En,p,q(r)(x)=0 (See [13,17,19,20]).
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Figure 1. Zeros of En,p,q(r)(x)=0. 
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Table 1. Numbers of real and complex zeros of En,p,q(r)(x).






Table 1. Numbers of real and complex zeros of En,p,q(r)(x).





	

	
r=1,p=12,q=110

	
r=3,p=12,q=110




	
Degree n

	
Real Zeros

	
Complex Zeros

	
Real Zeros

	
Complex Zeros






	
1

	
1

	
0

	
0

	
1




	
2

	
2

	
0

	
*

	
*




	
3

	
1

	
2

	
1

	
2




	
4

	
2

	
2

	
*

	
*




	
5

	
1

	
4

	
1

	
4




	
6

	
2

	
4

	
2

	
4




	
7

	
1

	
6

	
1

	
6




	
8

	
*

	
*

	
*

	
*




	
9

	
1

	
8

	
1

	
8




	
10

	
2

	
8

	
2

	
8




	
11

	
1

	
10

	
1

	
10




	
12

	
2

	
10

	
2

	
10




	
13

	
1

	
12

	
1

	
12




	
14

	
*

	
*

	
2

	
12




	
15

	
1

	
14

	
1

	
14




	
16

	
*

	
*

	
*

	
*




	
17

	
1

	
16

	
1

	
16
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Table 2. Numerical solutions of En,p,q(3)(x)=0,p=12,q=110.






Table 2. Numerical solutions of En,p,q(3)(x)=0,p=12,q=110.





	Degree n
	x





	1
	0.0723976



	2
	*



	3
	0.206956



	4
	*



	5
	0.258552



	6
	−0.163912,  0.273465
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