Multi-Attribute Decision Making Based on Probabilistic Neutrosophic Hesitant Fuzzy Choquet Aggregation Operators
Abstract
:1. Introduction
2. Preliminaries
- (1)
- ,
- (2)
- ,
- (3)
- ,
- (4)
- ,
- (5)
- ,
- (1)
- , ;
- (2)
- , then , ;Fuzzy measure μ satisfies property, ,Then, μ is described a λ-fuzzy measure.
3. PNHFSs and Aggregation Operators
3.1. The Comparison Method of PNHFEs
- (1)
- If , it indicates that PNHFE is superior to ;
- (2)
- If , it indicates that PNHFE is inferior to ;
- (3)
- If , it indicates that PNHFE is equal to .
3.2. The PNHFCOA Operator and PNHFCOG Operator
- (1)
- When , we have the following equation by Definition 10:Obviously, is an PNHFE.
- (2)
- When , we haveThus, we know is an PNHFE.
- (3)
- When , Equation (9) is true, and we haveThus, the next formula is obtained, ,Thus, for any n, the conclusion is right. □
- (1)
- Assume , then
- (2)
- Assume , then
- (3)
- Assume the condition is independent, the PNHFCOA operator is described an PNHFWA operator,
- (4)
- Assume the condition , the PNHFCOA operator and PNHFWA operator reduce to the PNHFA operator,
- (1)
- Assume , then
- (2)
- Assume , then
- (3)
- Assume the prerequisite is independent, the PNHFCOG operator indicates an PNHFWG operator:
- (4)
- Assume the precondition , the PNHFFCG operator and PNHFWG operator reduce to the PNHFG operator:
- (1)
- (Monotonicity) Assume and , indicate two PNHFEs. The factor satisfies condition and . With and , there are , , and , , . Then,
- (2)
- (Boundedness) Assume indicates an PNHFE,Then,
- (3)
- (Idempotency) Assume is a normalized PNHFE, then
- (4)
- (Commutativity) Assume and are two finite sets. If the position of the element in is changed arbitrarily to get , then:
4. A MADM method in PNHF Environment
5. The Program of the Proposed Approach
- Step 2. Since the information of fuzzy measure is , , , , respectively. By Equation (3), we get . Thus, taking as an example, we can get
- Step 3. Utilizing the PNHFCOA operator, by Equation (9), we can get
- Step 4. Rank the PNHFEs by Definition 9,The 3PL Company is an optimal option.
6. Comparison with Other Approaches
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Konwar, N.; Davvaz, B.; Debnath, P. Results on generalized intuitionistic fuzzy hypergroupoids. J. Intell. Fuzzy Syst. 2019, 36, 2571–2580. [Google Scholar] [CrossRef]
- Fu, C.; Chang, W.; Xue, M.; Yang, S. Multiple criteria group decision-making with belief distributions and distributed preference relations. Eur. J. Oper. Res. 2019, 273, 623–633. [Google Scholar] [CrossRef]
- Peng, H.G.; Zhang, H.Y.; Wang, J.Q. Probability multi-valued neutrosophic sets and its application in multi-criteria group decision-making problems. Neural Comput. Appl. 2017, 20, 563–583. [Google Scholar] [CrossRef]
- Xue, J.; Wu, C.; Chen, Z.; Van Gelder, P.H.; Yan, X. Modeling human-like decision-making for inbound smart ships based on fuzzy decision trees. Expert Syst. Appl. 2019, 115, 172–188. [Google Scholar] [CrossRef]
- Spizzichino, F.L. On the probabilistic meaning of copula-based extensions of fuzzy measures. Applications to target-based utilities and multi-state reliability systems. Fuzzy Sets Syst. 2019, 354, 1–19. [Google Scholar] [CrossRef]
- Ma, Y.C.; Zhang, X.H.; Yang, X.F.; Zhou, X. Generalized neutrosophic extended triplet group. Symmetry 2019, 11, 327. [Google Scholar] [CrossRef]
- Li, L.; Jin, Q.; Hu, K. Lattice-valued convergence associated with CNS spaces. Fuzzy Sets Syst. 2018. [Google Scholar] [CrossRef]
- Jin, Q.; Li, L.; Lv, Y.; Zhao, F.; Zou, J. Connectedness for lattice-valued subsets in lattice-valued convergence spaces. Quaest. Math. 2019, 42, 135–150. [Google Scholar] [CrossRef]
- Li, L.Q. p-Topologicalness–A Relative Topologicalness in ⊤-Convergence Spaces. Mathematics 2019, 7, 228. [Google Scholar] [CrossRef]
- Zhang, X.H.; Park, C.; Wu, S.P. Soft set theoretical approach to pseudo-BCI algebras. J. Intell. Fuzzy Syst. 2018, 34, 559–568. [Google Scholar] [CrossRef]
- Wu, X.Y.; Zhang, X.H. The decomposition theorems of AG-neutrosophic extended triplet loops and strong AG-(l, l)-loops. Mathematics 2019, 7, 268. [Google Scholar] [CrossRef]
- Zhang, X.H. Fuzzy anti-grouped filters and fuzzy normal filters in pseudo-BCI algebras. J. Intell. Fuzzy Syst. 2017, 33, 1767–1774. [Google Scholar] [CrossRef]
- Brito, V.T.F.; Ferreira, F.A.F.; Pérez-Gladish, B.; Govindan, K.; Meidutė-Kavaliauskienė, I. Developing a green city assessment system using cognitive maps and the Choquet integral. J. Clean. Prod. 2019, 218, 486–497. [Google Scholar] [CrossRef]
- Krishnan, A.; Wahab, S.; Kasim, M.; Bakar, E. An alternate method to determine λ0-measure values prior to applying Choquet integral in a multi-attribute decision-making environment. Decis. Sci. Lett. 2019, 8, 193–210. [Google Scholar] [CrossRef]
- Beg, I.; Jamil, N.R.; Rashid, T. Diminishing Choquet Hesitant 2-Tuple Linguistic Aggregation Operator for Multiple Attributes Group Decision Making. Int. J. Anal. Appl. 2019, 17, 76–104. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Castillo, O.; Atanassov, K. Comments on Fuzzy Sets, Interval Type-2 Fuzzy Sets, General Type-2 Fuzzy Sets and Intuitionistic Fuzzy Sets. In Recent Advances in Intuitionistic Fuzzy Logic Systems; Springer: Cham, Switzerland, 2019; pp. 35–43. [Google Scholar]
- Song, C.; Zhao, H.; Xu, Z.S.; Hao, Z. Interval probabilistic hesitant fuzzy set and its application in the Arctic geopolitical risk evaluation. Int. J. Intell. Syst. 2019, 34, 627–651. [Google Scholar] [CrossRef]
- Farhadinia, B.; Xu, Z.S. Distance Measures for Hesitant Fuzzy Sets and Their Extensions; Springer: Singapore, 2019; pp. 31–58. [Google Scholar]
- Smarandache, F. A unifying field in logics: Neutrosophic logic. Multi-Valued Log. 1999, 8, 489–503. [Google Scholar]
- Wei, G.; Zhang, Z. Some single-valued neutrosophic Bonferroni power aggregation operators in multiple attribute decision-making. J. Ambient Intell. Humaniz. Comput. 2019, 10, 863–882. [Google Scholar] [CrossRef]
- Thong, N.T.; Dat, L.Q.; Hoa, N.D.; Ali, M.; Smarandache, F. Dynamic interval valued neutrosophic set: Modeling decision-making in dynamic environments. Comput. Ind. 2019, 108, 45–52. [Google Scholar] [CrossRef]
- Sun, R.; Hu, J.; Chen, X. Novel single-valued neutrosophic decision-making approaches based on prospect theory and their applications in physician selection. Soft Comput. 2019, 23, 211–225. [Google Scholar] [CrossRef]
- Yong, R.; Ye, J. Multiple Attribute Projection Methods with Neutrosophic Sets. In Fuzzy Multi-Criteria Decision-Making Using Neutrosophic Sets; Springer: Cham, Switzerland, 2019; pp. 603–622. [Google Scholar]
- Ye, J.; Du, S. Some distances, similarity and entropy measures for interval-valued neutrosophic sets and their relationship. Int. J. Mach. Learn. Cybern. 2019, 10, 347–355. [Google Scholar] [CrossRef]
- Sahin, R.; Liu, P.D. Maximizing deviation method for neutrosophic multiple attribute decision-making with incomplete weight information. Neural Comput. Appl. 2015, 27, 2017–2029. [Google Scholar] [CrossRef]
- Ye, J. Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artif. Intell. Med. 2015, 63, 171–179. [Google Scholar] [CrossRef]
- Tian, Z.P.; Zhang, H.Y.; Wang, J.; Wang, J.Q.; Chen, X.H. Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 2016, 47, 3598–3608. [Google Scholar] [CrossRef]
- Zhang, X.H.; Borzooei, R.A.; Jun, Y.B. Q-filters of quantum B-algebras and basic implication algebras. Symmetry 2018, 10, 573. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wang, X.J.; Smarandache, F.; Jaíyéolá, T.G.; Lian, T. Singular neutrosophic extended triplet groups and generalized groups. Cogn. Syst. Res. 2018. [Google Scholar] [CrossRef]
- Zhang, X.H.; Bo, C.X.; Smarandache, F.; Park, C. New operations of totally dependent-neutrosophic sets and totally dependent-neutrosophic soft sets. Symmetry 2018, 10, 187. [Google Scholar] [CrossRef]
- Zhang, X.H.; Mao, X.Y.; Wu, Y.T.; Zhai, X.H. Neutrosophic filters in pseudo-BCI algebras. Int. J. Uncertainty Quant. 2018, 8, 511–526. [Google Scholar] [CrossRef]
- Smith, P. Exploring public transport sustainability with neutrosophic logic. Transp. Plan. Technol. 2019, 1–17. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. Neutrosophic TOPSIS with group decision-making. In Fuzzy Multi-Criteria Decision-Making Using Neutrosophic Sets; Springer: Cham, Switzerland, 2019; pp. 543–585. [Google Scholar]
- Nirmal, N.P.; Bhatt, M.G. Development of Fuzzy-Single Valued Neutrosophic MADM Technique to Improve Performance in Manufacturing and Supply Chain Functions. In Fuzzy Multi-Criteria Decision-Making Using Neutrosophic Sets; Springer: Cham, Switzerland, 2019; pp. 711–729. [Google Scholar]
- Li, G.; Niu, C.; Zhang, C. Multi-criteria decision-making approach using the fuzzy measures for environmental improvement under neutrosophic environment. Ekoloji 2019, 28, 1605–1615. [Google Scholar]
- Shao, S.T.; Zhang, X.H.; Li, Y.; Bo, C.X. Probabilistic single-valued (interval) neutrosophic hesitant fuzzy set and its application in multi-attribute decision-making. Symmetry 2018, 10, 419. [Google Scholar] [CrossRef]
- Choquet, G. Theory of capacities. Ann. Inst. Fourier 1953, 5, 131–295. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Abdullah, S.; Ali, A.; Amin, F.; Hussain, F. Pythagorean hesitant fuzzy Choquet integral aggregation operators and their application to multi-attribute decision-making. Soft Comput. 2019, 23, 251–267. [Google Scholar] [CrossRef]
- Corrente, S.; Greco, S.; Slowiński, R. Robust ranking of universities evaluated by hierarchical and interacting criteria. In Multiple Criteria Decision Making and Aiding; Springer: Cham, Switzerland, 2019; pp. 145–192. [Google Scholar]
- Labreuche, C.; Grabisch, M. Using multiple reference levels in Multi-Criteria Decision aid: The Generalized-Additive Independence model and the Choquet integral approaches. Eur. J. Oper. Res. 2018, 267, 598–611. [Google Scholar] [CrossRef]
- Yager, R.R. On Using the Shapley Value to Approximate the Choquet Integral in Cases of Uncertain Arguments. IEEE Trans. Fuzzy Syst. 2018, 26, 1303–1310. [Google Scholar] [CrossRef]
- Liu, P.; Tang, G. Some generalized Shapely interval-valued dual hesitant fuzzy uncertain linguistic Choquet geometric operators and their application to multiple attribute decision-making. J. Intell. Fuzzy Syst. 2019, 36, 557–574. [Google Scholar] [CrossRef]
- Sugeno, M. Theory of Fuzzy Integrals and Its Applications. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974. [Google Scholar]
- Wu, X.H.; Wang, J.; Peng, J.J.; Chen, X.H. Cross-entropy and prioritized aggregation operator with simplified neutrosophic setsand their application in multi-criteria decision-making problems. Int. J. Fuzzy Syst. 2016, 18, 1104–1116. [Google Scholar] [CrossRef]
- Guariglia, E. Primality, Fractality and Image Analysis. Entropy 2019, 21, 304. [Google Scholar] [CrossRef]
- Guido, R.C.; Addison, P.; Walker, J. Introducing wavelets and time-frequency analysis. IEEE Eng. Biol. Med. Mag. 2009, 28, 13. [Google Scholar] [CrossRef]
- Guido, R.C. Practical and useful tips on discrete wavelet transforms. IEEE Signal Process. Mag. 2015, 32, C162–C166. [Google Scholar] [CrossRef]
- Guariglia, E. Entropy and Fractal Antennas. Entropy 2016, 18, 84. [Google Scholar] [CrossRef]
- Guariglia, E. Harmonic Sierpinski Gasket and Applications. Entropy 2018, 20, 714. [Google Scholar] [CrossRef]
, | |
, | |
, | |
, | |
0.6185 | 0.4700 | 0.8259 | 0.5782 | |
0.6081 | 0.4885 | 0.7204 | 0.6941 | |
0.5395 | 0.6181 | 0.5273 | 0.6072 | |
0.5907 | 0.6825 | 0.6562 | 0.8329 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, S.; Zhang, X.; Zhao, Q. Multi-Attribute Decision Making Based on Probabilistic Neutrosophic Hesitant Fuzzy Choquet Aggregation Operators. Symmetry 2019, 11, 623. https://doi.org/10.3390/sym11050623
Shao S, Zhang X, Zhao Q. Multi-Attribute Decision Making Based on Probabilistic Neutrosophic Hesitant Fuzzy Choquet Aggregation Operators. Symmetry. 2019; 11(5):623. https://doi.org/10.3390/sym11050623
Chicago/Turabian StyleShao, Songtao, Xiaohong Zhang, and Quan Zhao. 2019. "Multi-Attribute Decision Making Based on Probabilistic Neutrosophic Hesitant Fuzzy Choquet Aggregation Operators" Symmetry 11, no. 5: 623. https://doi.org/10.3390/sym11050623
APA StyleShao, S., Zhang, X., & Zhao, Q. (2019). Multi-Attribute Decision Making Based on Probabilistic Neutrosophic Hesitant Fuzzy Choquet Aggregation Operators. Symmetry, 11(5), 623. https://doi.org/10.3390/sym11050623