Particle Fluctuations in Mesoscopic Bose Systems
Abstract
:1. Introduction
2. Particle Fluctuations and Stability
3. Ideal Gas in a Rectangular Box
3.1. Modified Bose Function
3.2. Fluctuations above the Condensation Temperature
3.3. Condensation Temperature of a Gas in a Rectangular Box
3.4. Fluctuations below Critical Temperature
4. Ideal Gas in a Power-Law Trap
4.1. Modified Semiclassical Approximation
4.2. Condensation Temperature of a Gas in a Power-Law Trap
4.3. Scaling with Respect to the Particle Number
4.4. Fluctuations above the Condensation Temperature
4.5. Fluctuations below the Condensation Temperature
5. Interacting Bose System above the Condensation Temperature
6. Interacting Bose System below the Condensation Temperature
6.1. Self-Consistent Approach
6.2. Particle Fluctuations
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Courteille, P.W.; Bagnato, V.S.; Yukalov, V.I. Bose-Einstein condensation of trapped atomic gases. Laser Phys. 2001, 11, 659–800. [Google Scholar]
- Andersen, J.O. Theory of the weakly interacting Bose gas. Rev. Mod. Phys. 2004, 76, 599–639. [Google Scholar] [CrossRef]
- Yukalov, V.I. Principal problems in Bose-Einstein condensation of dilute gases. Laser Phys. Lett. 2004, 1, 435–461. [Google Scholar] [CrossRef]
- Bongs, K.; Sengstock, K. Physics with coherent matter waves. Rep. Prog. Phys. 2004, 67, 907–964. [Google Scholar] [CrossRef]
- Yukalov, V.I.; Girardeau, M.D. Fermi-Bose mapping for one-dimensional Bose gases. Laser Phys. Lett. 2005, 2, 375–382. [Google Scholar] [CrossRef]
- Lieb, E.H.; Seiringer, R.; Solovej, J.P.; Yngvason, J. The Mathematics of the Bose Gas and its Condensation; Birkhauser: Basel, Switzerland, 2005. [Google Scholar]
- Posazhennikova, A. Weakly interacting dilute Bose gases in 2D. Rev. Mod. Phys. 2006, 78, 1111–1134. [Google Scholar] [CrossRef]
- Morsch, O.; Oberthaler, M. Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 2006, 78, 179–216. [Google Scholar] [CrossRef]
- Yukalov, V.I. Bose-Einstein condensation and gauge symmetry breaking. Laser Phys. Lett. 2007, 4, 632–647. [Google Scholar] [CrossRef]
- Letokhov, V. Laser Control of Atoms and Molecules; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Moseley, C.; Fialko, O.; Ziegler, K. Interacting bosons in an optical lattice. Ann. Phys. 2008, 17, 561–608. [Google Scholar] [CrossRef]
- Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008, 80, 885–964. [Google Scholar] [CrossRef]
- Proukakis, N.P.; Jackson, B. Finite-temperature models of Bose-Einstein condensation. J. Phys. B 2008, 41, 203002. [Google Scholar] [CrossRef]
- Yurovsky, V.A.; Olshanii, M.; Weiss, D.S. Collisions, correlations, and integrability in atom waveguides. Adv. At. Mol. Opt. Phys. 2008, 55, 61–138. [Google Scholar]
- Pethick, C.J.; Smith, H. Bose-Einstein Condensation in Dilute Gases; Cambridge University: Cambridge, UK, 2008. [Google Scholar]
- Yukalov, V.I. Cold bosons in optical lattices. Laser Phys. 2009, 19, 1–110. [Google Scholar] [CrossRef]
- Yukalov, V.I. Basics of Bose-Einstein condensation. Phys. Part. Nucl. 2011, 42, 460–513. [Google Scholar] [CrossRef]
- Yukalov, V.I. Theory of cold atoms: Bose-Einstein statistics. Laser Phys. 2016, 26, 062001. [Google Scholar] [CrossRef]
- Yukalov, V.I.; Yukalova, E.P. Bose-Einstein condensation temperature of weakly interacting atoms. Laser Phys. Lett. 2017, 14, 073001. [Google Scholar] [CrossRef]
- Kocharovsky, V.V.; Kocharovsky, V.V.; Holthaus, M.; Ooi, C.R.; Svidzinsky, A.; Ketterle, W.; Scully, M.O. Fluctuations in ideal and interacting Bose–Einstein condensates: From the laser phase transition analogy to squeezed states and Bogolubov quasiparticles. Adv. At. Mol. Opt. Phys. 2006, 53, 291–411. [Google Scholar]
- Patashinskii, A.Z.; Pokrovskii, V.L. Fluctuation Theory of Phase Transitions; Pergamon: Oxford, UK, 1979. [Google Scholar]
- Yukalov, V.I. Theory of cold atoms: Basics of quantum statistics. Laser Phys. 2013, 23, 062001. [Google Scholar] [CrossRef]
- Yukalov, V.I. No anomalous fluctuations exist in stable equilibrium systems. Phys. Lett. A 2005, 340, 369–374. [Google Scholar] [CrossRef]
- Yukalov, V.I. Fluctuations of composite observables and stability of statistical systems. Phys. Rev. E 2005, 72, 066119. [Google Scholar] [CrossRef]
- Gaunt, A.L.; Tobias, F.; Schmidutz, T.F.; Gotlibovych, I.; Smith, R.P.; Hadzibabic, Z. Bose-Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 2013, 110, 200406. [Google Scholar] [CrossRef]
- Navon, N.; Gaunt, A.L.; Smith, R.P.; Hadzibabic, Z. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science 2015, 347, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.; Eigen, C.; Navon, N.; Clement, D.; Smith, R.P.; Hadzibabic, Z. Quantum depletion of a homogeneous Bose-Einstein condensate. Phys. Rev. Lett. 2017, 119, 190404. [Google Scholar] [CrossRef]
- Bogolubov, N.N. Lectures on Quantum Statistics; Gordon and Breach: New York, NY, USA, 1967; Volume 1. [Google Scholar]
- Bogolubov, N.N. Lectures on Quantum Statistics; Gordon and Breach: New York, NY, USA, 1970; Volume 2. [Google Scholar]
- Bogolubov, N.N. Quantum Statistical Mechanics; World Scientific: Singapore, 2015. [Google Scholar]
- Yukalov, V.I. Modified semiclassical approximation for trapped Bose gases. Phys. Rev. A 2005, 72, 033608. [Google Scholar] [CrossRef]
- Yukalov, V.I.; Yukalova, E.P. Bose-condensed atomic systems with nonlocal interaction potentials. Laser Phys. 2016, 26, 045501. [Google Scholar] [CrossRef]
- Yukalov, V.I. Dipolar and spinor bosonic systems. Laser Phys. 2018, 28, 053001. [Google Scholar] [CrossRef]
- Yukalov, V.I. Self-consistent theory of Bose-condensed systems. Phys. Lett. A 2006, 359, 712–717. [Google Scholar] [CrossRef]
- Yukalov, V.I. Representative statistical ensembles for Bose systems with broken gauge symmetry. Ann. Phys. 2008, 323, 461–499. [Google Scholar] [CrossRef]
- Birman, J.L.; Nazmitdinov, R.G.; Yukalov, V.I. Effects of symmetry breaking in finite quantum systems. Phys. Rep. 2013, 526, 1–91. [Google Scholar] [CrossRef]
- Yukalov, V.I. Particle fluctuations in nonuniform and trapped Bose gases. Laser Phys. Lett. 2009, 6, 688–695. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yukalov, V.I. Particle Fluctuations in Mesoscopic Bose Systems. Symmetry 2019, 11, 603. https://doi.org/10.3390/sym11050603
Yukalov VI. Particle Fluctuations in Mesoscopic Bose Systems. Symmetry. 2019; 11(5):603. https://doi.org/10.3390/sym11050603
Chicago/Turabian StyleYukalov, Vyacheslav I. 2019. "Particle Fluctuations in Mesoscopic Bose Systems" Symmetry 11, no. 5: 603. https://doi.org/10.3390/sym11050603