An Improvement of GM (1, N) Model Based on Support Vector Machine Regression with Nonlinear Cross Effects
Abstract
:1. Introduction
2. GM (1, N) Model with Cross Effect
2.1. Classic GM (1, N) Model
2.2. GM (1, N) Model with Cross Effect
- When , , ;
- When , and , ;
- When , and is line non-singular matrix, thus, the non-singular matrix of is , where the generalized inverse matrix of is .
3. GM (1, N) Model with Nonlinear Cross Effect
4. Empirical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deng, J.L. Three properties of Grey Forecasting Model GM (1, 1)-the issue on the optimization structure and optimization information volume of grey predictive control. J. Huazhong Univ. Sci. Technol. 1987, 5, 1–6. (In Chinese) [Google Scholar]
- Deng, J.L. The Fundamental of Grey Theory; Huazhong University of Science and Technology Press: Wuhan, China, 2002. (In Chinese) [Google Scholar]
- Liu, S.; Yi, L. Introduction to Grey Systems Theory. Underst. Complex Syst. 2010, 68, 1–18. [Google Scholar]
- Liu, S.; Forrest, J.; Yang, Y. A brief introduction to grey systems theory. Grey Syst. 2011, 3, 2403–2408. [Google Scholar]
- Deng, J.L. Properties of multivariable Grey model GM (1, N). J. Grey Syst. 1989, 1, 25–41. [Google Scholar]
- Tien, T.L. A research on the grey prediction model GM (1, n). Appl. Math. Comput. 2012, 218, 4903–4916. [Google Scholar] [CrossRef]
- Xiao, X.; Deng, J. A new modified GM (1, 1) model: Grey optimization model. J. Syst. Eng. Electron. 2001, 12, 1–5. [Google Scholar]
- Mao, M.; Chirwa, E.C. Application of grey model GM (1, 1) to vehicle fatality risk estimation. Technol. Forecast. Soc. Chang. 2006, 73, 588–605. [Google Scholar] [CrossRef]
- Hsu, L.-C. Forecasting the output of integrated circuit industry using genetic algorithm based multivariable grey optimization models. Expert Syst. Appl. 2009, 36, 7898–7903. [Google Scholar] [CrossRef]
- Wu, L.F.; Liu, S.F.; Cui, W.; Liu, D.L.; Yao, T.X. Non-homogenous discrete grey model with fractional-order accumulation. Neural Comput. Appl. 2014, 25, 1215–1221. [Google Scholar] [CrossRef]
- Tien, T.-L. The deterministic grey dynamic model with convolution integral DGDMC (1, n). Appl. Math. Model. 2009, 33, 3498–3510. [Google Scholar] [CrossRef]
- Jones, M.A.; Heller, P.L.; Roca, E.; Garcés, M.; Cabrera, L. Time lag of syntectonic sedimentation across an alluvial basin: Theory and example from the Ebro Basin. Spain Basin Res. 2004, 16, 489–506. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Chen, S.-P. A prediction method using the grey model GMC (1, n) combined with the grey relational analysis: A case study on Internet access population forecast. Appl. Math. Comput. 2005, 169, 198–217. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Y.; Zhao, J.; Li, H. Grey system model with time lag and application to simulation of karst spring discharge. Grey Syst. Theory Appl. 2011, 1, 47–56. [Google Scholar] [CrossRef]
- Han, L.; Tang, W.; Liu, Y.; Wang, J.; Fu, C. Evaluation of measurement uncertainty based on grey system theory for small samples from an unknown distribution. Sci. China Technol. Sci. 2013, 56, 1517–1524. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Yao, L.; Yan, S.; Liu, D. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Fang, Z.; Xu, H. Properties of the GM (1, 1) with fractional order accumulation. Appl. Math. Comput. 2015, 252, 287–293. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, S.; Fang, Z. Comparison of China’s primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM (1, 1) model. Energy 2016, 100, 384–390. [Google Scholar] [CrossRef]
- Feng, J.; Hua, X.; Wang, L. Application of GM (1, n) Model in High-speed Rail. J. Geomat. 2014, 6, 130–137. [Google Scholar]
- Ma, X.; Liu, Z. Predicting the oil field production using the novel discrete GM (1, N) model. J. Grey Syst. 2015, 27, 63–74. [Google Scholar]
- Kayacan, E.; Ulutas, B.; Kaynak, O. Grey system theory-based models in time series prediction. Expert Syst. Appl. 2010, 37, 1784–1789. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Hipel, K.W.; Wang, Q.; He, S.-W. An optimized NGBM (1, 1) model for forecasting the qualified discharge rate of industrial wastewater in China. Appl. Math. Model. 2011, 35, 5524–5532. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, H. Optimization of Background Values of GM (1, N) Model and Its Application. Int. J. Inf. Process. Manag. 2013, 4, 58–64. [Google Scholar]
- Guo, H.; Xiao, X.; Forrest, J. A research on a comprehensive adaptive grey prediction model CAGM (1, N). Appl. Math. Comput. 2013, 225, 216–227. [Google Scholar] [CrossRef]
- Bo, Z.; Luo, C.; Liu, S.; Bai, Y.; Li, C. Development of an optimization method for the GM (1, N) model. Eng. Appl. Artif. Intell. 2016, 55, 353–362. [Google Scholar]
- Mao, X.; Li, Z. Predicting the Number of Beijing Science and Technology Personnel Based on GM (1, N) Model. Open J. Appl. Sci. 2016, 6, 299–309. [Google Scholar] [CrossRef]
- Gao, J.; Sun, Y.; Wang, D. Research of EDM Titanium Alloy TC11 Based on GM (1, N) Model and BP Neural Network. Appl. Mech. Mater. 2014, 556–562, 395–398. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, T.; Wu, D.; Geomatics, F.O. Application of PSO-GM (1, 1, N,p,ξ) Model to Prediction of Deformation. J. Geod. Geodyn. 2017, 7, 715–720. [Google Scholar]
Year | ||||||||
---|---|---|---|---|---|---|---|---|
2005 | 4250 | 661.8 | 258,442 | 13,065 | 8659.91 | 184,937.4 | 10,493 | 101.8 |
2006 | 5019 | 769.0 | 313,592 | 19,504 | 9843.34 | 216,314.4 | 11,759 | 101.5 |
2007 | 6362 | 885.0 | 399,717 | 27,155 | 11,573.97 | 265,810.3 | 13,786 | 104.8 |
2008 | 7875 | 1155.6 | 500,020 | 30,562 | 14,535.40 | 314,045.4 | 15,781 | 105.9 |
2009 | 9443 | 1858.6 | 547,000 | 45,333 | 17,541.92 | 340,902.8 | 17,175 | 99.3 |
2010 | 12,350 | 2119.0 | 697,744 | 53,050 | 19,980.39 | 401,512.8 | 19,109 | 103.3 |
2011 | 15,624 | 2330.3 | 841,830 | 61,396 | 24,345.91 | 473,104.0 | 21,810 | 105.4 |
2012 | 18,770 | 2617.1 | 929,292 | 61,910 | 28,119.00 | 519,470.1 | 24,565 | 102.6 |
2013 | 22,297 | 3139.3 | 1,029,150 | 62,831 | 31,668.95 | 568,845.2 | 18,310.8 | 102.6 |
2014 | 25,798 | 3991.5 | 1,107,033 | 68,155 | 35,312.40 | 636,138.7 | 20,167.1 | 102.0 |
2015 | 29,038 | 5175.6 | 1,109,853 | 66,187 | 40,974.64 | 689,052.1 | 21,966.2 | 101.4 |
2016 | 31,676 | 6282.1 | 1,158,999 | 71,921 | 46,344.88 | 744,127.2 | 23,821.0 | 102 |
2017 | 32,395 | 7327.9 | 1,133,161 | 74,916 | 52,598.28 | 827,121.7 | 25,973.8 | 101.6 |
Year | Actual Value | Classic GM (1, N) | GM (1, N) with Linear Cross Effect | GM (1, N) Based on SVM with Non-Linear Cross Effect | |||
---|---|---|---|---|---|---|---|
Fitted Value | Relative Error/% | Fitted Value | Relative Error/% | Fitted Value | Relative Error/% | ||
2005 | 4250 | 4250 | - | 4250 | - | 4250 | - |
2006 | 5019 | 5227.8 | 4.16 | 5204 | 3.69 | 5122 | 2.06 |
2007 | 6362 | 6707 | 5.43 | 6646 | 4.46 | 6586 | 3.52 |
2008 | 7875 | 8385 | 6.48 | 8291.5 | 5.29 | 8181 | 3.89 |
2009 | 9443 | 10,590 | 12.15 | 10,461 | 10.78 | 9873.6 | 4.56 |
2010 | 12,350 | 14,696.5 | 19.01 | 13,898.7 | 12.54 | 12,867.5 | 4.19 |
2011 | 15,624 | 16,509.8 | 5.67 | 17,378.6 | 11.23 | 16,527 | 5.78 |
2012 | 18,770 | 20,587 | 9.68 | 20,292 | 8.11 | 19,731 | 5.12 |
2013 | 22,297 | 25,737 | 15.43 | 24,428.6 | 9.56 | 23,342.7 | 4.69 |
Fitted total of Relative Error | - | - | 78.01 | - | 65.66 | - | 34.52 |
Year | Actual Value | Classic GM (1, N) | GM (1, N) with Linear Cross Effect | GM (1, N) Based on SVM with Non-Linear Cross Effect | |||
---|---|---|---|---|---|---|---|
Predicted Value | Relative Error/% | Predicted Value | Relative Error | Predicted Value | Relative Error | ||
2014 | 25,798 | 27,193.6 | 5.41 | 26,884 | 4.21 | 26,744.8 | 3.67 |
2015 | 29,038 | 32,043.4 | 10.35 | 30,853 | 6.25 | 30,434.7 | 4.81 |
2016 | 31,676 | 35,822 | 13.09 | 34,251 | 8.13 | 33,237.6 | 4.93 |
2017 | 32,395 | 37,361 | 15.33 | 35,949 | 10.97 | 33,409 | 3.13 |
Forecast total of Relative Error | - | - | 50.18 | - | 29.56 | - | 16.54 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Jiao, F.; Zhang, Q. An Improvement of GM (1, N) Model Based on Support Vector Machine Regression with Nonlinear Cross Effects. Symmetry 2019, 11, 604. https://doi.org/10.3390/sym11050604
Duan J, Jiao F, Zhang Q. An Improvement of GM (1, N) Model Based on Support Vector Machine Regression with Nonlinear Cross Effects. Symmetry. 2019; 11(5):604. https://doi.org/10.3390/sym11050604
Chicago/Turabian StyleDuan, Jinli, Feng Jiao, and Qishan Zhang. 2019. "An Improvement of GM (1, N) Model Based on Support Vector Machine Regression with Nonlinear Cross Effects" Symmetry 11, no. 5: 604. https://doi.org/10.3390/sym11050604
APA StyleDuan, J., Jiao, F., & Zhang, Q. (2019). An Improvement of GM (1, N) Model Based on Support Vector Machine Regression with Nonlinear Cross Effects. Symmetry, 11(5), 604. https://doi.org/10.3390/sym11050604