An Improvement of GM (1, N) Model Based on Support Vector Machine Regression with Nonlinear Cross Effects
Abstract
1. Introduction
2. GM (1, N) Model with Cross Effect
2.1. Classic GM (1, N) Model
2.2. GM (1, N) Model with Cross Effect
- When , , ;
- When , and , ;
- When , and is line non-singular matrix, thus, the non-singular matrix of is , where the generalized inverse matrix of is .
3. GM (1, N) Model with Nonlinear Cross Effect
4. Empirical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deng, J.L. Three properties of Grey Forecasting Model GM (1, 1)-the issue on the optimization structure and optimization information volume of grey predictive control. J. Huazhong Univ. Sci. Technol. 1987, 5, 1–6. (In Chinese) [Google Scholar]
- Deng, J.L. The Fundamental of Grey Theory; Huazhong University of Science and Technology Press: Wuhan, China, 2002. (In Chinese) [Google Scholar]
- Liu, S.; Yi, L. Introduction to Grey Systems Theory. Underst. Complex Syst. 2010, 68, 1–18. [Google Scholar]
- Liu, S.; Forrest, J.; Yang, Y. A brief introduction to grey systems theory. Grey Syst. 2011, 3, 2403–2408. [Google Scholar]
- Deng, J.L. Properties of multivariable Grey model GM (1, N). J. Grey Syst. 1989, 1, 25–41. [Google Scholar]
- Tien, T.L. A research on the grey prediction model GM (1, n). Appl. Math. Comput. 2012, 218, 4903–4916. [Google Scholar] [CrossRef]
- Xiao, X.; Deng, J. A new modified GM (1, 1) model: Grey optimization model. J. Syst. Eng. Electron. 2001, 12, 1–5. [Google Scholar]
- Mao, M.; Chirwa, E.C. Application of grey model GM (1, 1) to vehicle fatality risk estimation. Technol. Forecast. Soc. Chang. 2006, 73, 588–605. [Google Scholar] [CrossRef]
- Hsu, L.-C. Forecasting the output of integrated circuit industry using genetic algorithm based multivariable grey optimization models. Expert Syst. Appl. 2009, 36, 7898–7903. [Google Scholar] [CrossRef]
- Wu, L.F.; Liu, S.F.; Cui, W.; Liu, D.L.; Yao, T.X. Non-homogenous discrete grey model with fractional-order accumulation. Neural Comput. Appl. 2014, 25, 1215–1221. [Google Scholar] [CrossRef]
- Tien, T.-L. The deterministic grey dynamic model with convolution integral DGDMC (1, n). Appl. Math. Model. 2009, 33, 3498–3510. [Google Scholar] [CrossRef]
- Jones, M.A.; Heller, P.L.; Roca, E.; Garcés, M.; Cabrera, L. Time lag of syntectonic sedimentation across an alluvial basin: Theory and example from the Ebro Basin. Spain Basin Res. 2004, 16, 489–506. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Chen, S.-P. A prediction method using the grey model GMC (1, n) combined with the grey relational analysis: A case study on Internet access population forecast. Appl. Math. Comput. 2005, 169, 198–217. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Y.; Zhao, J.; Li, H. Grey system model with time lag and application to simulation of karst spring discharge. Grey Syst. Theory Appl. 2011, 1, 47–56. [Google Scholar] [CrossRef]
- Han, L.; Tang, W.; Liu, Y.; Wang, J.; Fu, C. Evaluation of measurement uncertainty based on grey system theory for small samples from an unknown distribution. Sci. China Technol. Sci. 2013, 56, 1517–1524. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Yao, L.; Yan, S.; Liu, D. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Fang, Z.; Xu, H. Properties of the GM (1, 1) with fractional order accumulation. Appl. Math. Comput. 2015, 252, 287–293. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, S.; Fang, Z. Comparison of China’s primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM (1, 1) model. Energy 2016, 100, 384–390. [Google Scholar] [CrossRef]
- Feng, J.; Hua, X.; Wang, L. Application of GM (1, n) Model in High-speed Rail. J. Geomat. 2014, 6, 130–137. [Google Scholar]
- Ma, X.; Liu, Z. Predicting the oil field production using the novel discrete GM (1, N) model. J. Grey Syst. 2015, 27, 63–74. [Google Scholar]
- Kayacan, E.; Ulutas, B.; Kaynak, O. Grey system theory-based models in time series prediction. Expert Syst. Appl. 2010, 37, 1784–1789. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Hipel, K.W.; Wang, Q.; He, S.-W. An optimized NGBM (1, 1) model for forecasting the qualified discharge rate of industrial wastewater in China. Appl. Math. Model. 2011, 35, 5524–5532. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, H. Optimization of Background Values of GM (1, N) Model and Its Application. Int. J. Inf. Process. Manag. 2013, 4, 58–64. [Google Scholar]
- Guo, H.; Xiao, X.; Forrest, J. A research on a comprehensive adaptive grey prediction model CAGM (1, N). Appl. Math. Comput. 2013, 225, 216–227. [Google Scholar] [CrossRef]
- Bo, Z.; Luo, C.; Liu, S.; Bai, Y.; Li, C. Development of an optimization method for the GM (1, N) model. Eng. Appl. Artif. Intell. 2016, 55, 353–362. [Google Scholar]
- Mao, X.; Li, Z. Predicting the Number of Beijing Science and Technology Personnel Based on GM (1, N) Model. Open J. Appl. Sci. 2016, 6, 299–309. [Google Scholar] [CrossRef][Green Version]
- Gao, J.; Sun, Y.; Wang, D. Research of EDM Titanium Alloy TC11 Based on GM (1, N) Model and BP Neural Network. Appl. Mech. Mater. 2014, 556–562, 395–398. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, T.; Wu, D.; Geomatics, F.O. Application of PSO-GM (1, 1, N,p,ξ) Model to Prediction of Deformation. J. Geod. Geodyn. 2017, 7, 715–720. [Google Scholar]
Year | ||||||||
---|---|---|---|---|---|---|---|---|
2005 | 4250 | 661.8 | 258,442 | 13,065 | 8659.91 | 184,937.4 | 10,493 | 101.8 |
2006 | 5019 | 769.0 | 313,592 | 19,504 | 9843.34 | 216,314.4 | 11,759 | 101.5 |
2007 | 6362 | 885.0 | 399,717 | 27,155 | 11,573.97 | 265,810.3 | 13,786 | 104.8 |
2008 | 7875 | 1155.6 | 500,020 | 30,562 | 14,535.40 | 314,045.4 | 15,781 | 105.9 |
2009 | 9443 | 1858.6 | 547,000 | 45,333 | 17,541.92 | 340,902.8 | 17,175 | 99.3 |
2010 | 12,350 | 2119.0 | 697,744 | 53,050 | 19,980.39 | 401,512.8 | 19,109 | 103.3 |
2011 | 15,624 | 2330.3 | 841,830 | 61,396 | 24,345.91 | 473,104.0 | 21,810 | 105.4 |
2012 | 18,770 | 2617.1 | 929,292 | 61,910 | 28,119.00 | 519,470.1 | 24,565 | 102.6 |
2013 | 22,297 | 3139.3 | 1,029,150 | 62,831 | 31,668.95 | 568,845.2 | 18,310.8 | 102.6 |
2014 | 25,798 | 3991.5 | 1,107,033 | 68,155 | 35,312.40 | 636,138.7 | 20,167.1 | 102.0 |
2015 | 29,038 | 5175.6 | 1,109,853 | 66,187 | 40,974.64 | 689,052.1 | 21,966.2 | 101.4 |
2016 | 31,676 | 6282.1 | 1,158,999 | 71,921 | 46,344.88 | 744,127.2 | 23,821.0 | 102 |
2017 | 32,395 | 7327.9 | 1,133,161 | 74,916 | 52,598.28 | 827,121.7 | 25,973.8 | 101.6 |
Year | Actual Value | Classic GM (1, N) | GM (1, N) with Linear Cross Effect | GM (1, N) Based on SVM with Non-Linear Cross Effect | |||
---|---|---|---|---|---|---|---|
Fitted Value | Relative Error/% | Fitted Value | Relative Error/% | Fitted Value | Relative Error/% | ||
2005 | 4250 | 4250 | - | 4250 | - | 4250 | - |
2006 | 5019 | 5227.8 | 4.16 | 5204 | 3.69 | 5122 | 2.06 |
2007 | 6362 | 6707 | 5.43 | 6646 | 4.46 | 6586 | 3.52 |
2008 | 7875 | 8385 | 6.48 | 8291.5 | 5.29 | 8181 | 3.89 |
2009 | 9443 | 10,590 | 12.15 | 10,461 | 10.78 | 9873.6 | 4.56 |
2010 | 12,350 | 14,696.5 | 19.01 | 13,898.7 | 12.54 | 12,867.5 | 4.19 |
2011 | 15,624 | 16,509.8 | 5.67 | 17,378.6 | 11.23 | 16,527 | 5.78 |
2012 | 18,770 | 20,587 | 9.68 | 20,292 | 8.11 | 19,731 | 5.12 |
2013 | 22,297 | 25,737 | 15.43 | 24,428.6 | 9.56 | 23,342.7 | 4.69 |
Fitted total of Relative Error | - | - | 78.01 | - | 65.66 | - | 34.52 |
Year | Actual Value | Classic GM (1, N) | GM (1, N) with Linear Cross Effect | GM (1, N) Based on SVM with Non-Linear Cross Effect | |||
---|---|---|---|---|---|---|---|
Predicted Value | Relative Error/% | Predicted Value | Relative Error | Predicted Value | Relative Error | ||
2014 | 25,798 | 27,193.6 | 5.41 | 26,884 | 4.21 | 26,744.8 | 3.67 |
2015 | 29,038 | 32,043.4 | 10.35 | 30,853 | 6.25 | 30,434.7 | 4.81 |
2016 | 31,676 | 35,822 | 13.09 | 34,251 | 8.13 | 33,237.6 | 4.93 |
2017 | 32,395 | 37,361 | 15.33 | 35,949 | 10.97 | 33,409 | 3.13 |
Forecast total of Relative Error | - | - | 50.18 | - | 29.56 | - | 16.54 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Jiao, F.; Zhang, Q. An Improvement of GM (1, N) Model Based on Support Vector Machine Regression with Nonlinear Cross Effects. Symmetry 2019, 11, 604. https://doi.org/10.3390/sym11050604
Duan J, Jiao F, Zhang Q. An Improvement of GM (1, N) Model Based on Support Vector Machine Regression with Nonlinear Cross Effects. Symmetry. 2019; 11(5):604. https://doi.org/10.3390/sym11050604
Chicago/Turabian StyleDuan, Jinli, Feng Jiao, and Qishan Zhang. 2019. "An Improvement of GM (1, N) Model Based on Support Vector Machine Regression with Nonlinear Cross Effects" Symmetry 11, no. 5: 604. https://doi.org/10.3390/sym11050604
APA StyleDuan, J., Jiao, F., & Zhang, Q. (2019). An Improvement of GM (1, N) Model Based on Support Vector Machine Regression with Nonlinear Cross Effects. Symmetry, 11(5), 604. https://doi.org/10.3390/sym11050604