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Abstract: Particle fluctuations in mesoscopic Bose systems of arbitrary spatial dimensionality are
considered. Both ideal Bose gases and interacting Bose systems are studied in the regions above
the Bose–Einstein condensation temperature Tc, as well as below this temperature. The strength of
particle fluctuations defines whether the system is stable or not. Stability conditions depend on the
spatial dimensionality d and on the confining dimension D of the system. The consideration shows
that mesoscopic systems, experiencing Bose–Einstein condensation, are stable when: (i) ideal Bose
gas is confined in a rectangular box of spatial dimension d > 2 above Tc and in a box of d > 4 below
Tc; (ii) ideal Bose gas is confined in a power-law trap of a confining dimension D > 2 above Tc and of
a confining dimension D > 4 below Tc; (iii) the interacting Bose system is confined in a rectangular
box of dimension d > 2 above Tc, while below Tc, particle interactions stabilize the Bose-condensed
system, making it stable for d = 3; (iv) nonlocal interactions diminish the condensation temperature,
as compared with the fluctuations in a system with contact interactions.

Keywords: Bose systems; asymptotic symmetry breaking; Bose–Einstein condensation; particle
fluctuations; stability of Bose systems

1. Introduction

The theory of Bose systems has recently attracted high attention triggered by experimental studies
of cold trapped atoms (see, e.g., the books and review articles [1–19]). Special attention has been
payed to the study of particle fluctuations, mainly considering three-dimensional macroscopic Bose
systems or harmonically-trapped atoms. The importance of this problem has been emphasized after
the appearance of a number of papers claiming the occurrence of thermodynamically-anomalous
particle fluctuations in the whole region below the condensation temperature Tc even for equilibrium
three-dimensional interacting systems (a list of the papers containing such claims has been summarized
in [20]). The origin of the arising fictitious anomalies and the ways of avoiding them have been
discussed in detail in reviews [16–18].

It would not be strange if anomalously strong fluctuations would be found at the point of
a second-order phase transition. This would be natural, since at the point of a phase transition,
the system is unstable and fluctuations in a system can drastically increase. It is exactly the
system instability that drives the phase transition and forces the system to transfer to another
state. However, as soon as the transition to the other state has happened, the real system
becomes stable and has to exhibit thermodynamically normal fluctuations. It is therefore more than
strange how thermodynamically-anomalous fluctuations could arise in realistic three-dimensional
interacting systems.

Moreover, Bose–Einstein condensation is necessarily accompanied by the spontaneous breaking
of global gauge symmetry. From the mathematical point of view, the similar breaking of continuous
symmetry occurs under magnetic phase transitions [21]; hence, anomalous fluctuations of the order
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parameter should appear in magnets below Tc. However, thermodynamically-anomalous fluctuations
imply the system instability [22]. Therefore, if such fluctuations would really arise in the whole range
below Tc, then neither superfluids nor magnets would exist. Fortunately, it has been shown [23,24]
that thermodynamically-anomalous fluctuations in interacting three-dimensional equilibrium systems,
discussed in theoretical papers, are just calculational artifacts caused, briefly speaking, by the use of a
second-order approximation for calculating fourth-order terms.

The aim of the present paper is to extend the investigation of particle fluctuations in Bose systems
in several aspects: First, we consider mesoscopic systems that are finite, although containing many
particles N � 1. Taking into account a finite number of particles requires modifying the definition of
the Bose function by introducing a finite cutoff responsible for the existence of a minimal wave vector
prescribed by the system geometry. Second, we analyze particle fluctuations above, as well as below Tc

for the Bose systems of arbitrary dimensionality, which allows us to find the critical spatial dimension
above which the system is stable. Third, we consider two types of Bose systems, confined either in
a rectangular box or in a power-law trap. Fourth, the influence of nonlocal interactions on particle
fluctuations is analyzed, as compared to that of local interactions.

Throughout the paper, the system of units is employed where the Planck and Boltzmann constants
are set to one, h̄ = 1 and kB = 1.

2. Particle Fluctuations and Stability

Here and in what follows, we consider mesoscopic systems that are finite, containing a finite
number of particles N, although with this number is rather large, N � 1.

Observable quantities are given by statistical averages 〈Â〉 of Hermitian operators Â. Fluctuations
of the observable quantities are characterized by the variance:

var(Â) ≡ 〈Â2〉 − 〈Â〉2 .

The observable is called extensive when:

〈Â〉 ∝ N (N � 1) , (1)

which is equivalent to the condition:

〈Â〉
N
' const (N � 1) . (2)

Fluctuations are termed thermodynamically normal if the inequalities:

0 ≤ var(Â)

|〈Â〉|
< ∞ (3)

are valid for any N, which can also be represented as the condition:

var(Â)

|〈Â〉|
' const (N � 1) . (4)

When these conditions do not hold, the fluctuations are called thermodynamically anomalous.
Sometimes, instead of the terms thermodynamically normal or thermodynamically anomalous, one
says, for short, that fluctuations are just normal or anomalous.

Particle fluctuations, describing the fluctuations of the number of particles, characterized by the
number-of-particles operator N̂, are quantified by the relative variance:

var(N̂)

N
=

1
N

(
〈N̂2〉 − 〈N̂〉2

)
, (5)
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where N = 〈N̂〉. The fluctuations are normal when:

0 ≤ var(N̂)

N
< ∞ (6)

for any N, or in other words, when:

var(N̂)

N
' const (N � 1) . (7)

The strength of particle fluctuations characterizes the system stability, since these fluctuations are
directly connected to the isothermal compressibility:

κT ≡ −
1
V

(
∂V
∂P

)
TN

=
1

ρN

(
∂N
∂µ

)
TV

(8)

by the equality:

κT =
var(N̂)

ρTN

(
ρ ≡ N

V

)
, (9)

with ρ being the average particle density. The system stability requires that:

0 ≤ κT < ∞ (10)

for any N, which yields Conditions (6) and (7). The above relations give us one of the ways for
calculating the relative variance:

var(N̂)

N
= ρTκT =

T
N

(
∂N
∂µ

)
TV

. (11)

3. Ideal Gas in a Rectangular Box

Bose systems in a rectangular box are not merely an interesting object allowing for detailed
calculations, but it can also be realized experimentally inside box-shaped traps [25–27].

3.1. Modified Bose Function

The grand Hamiltonian of a gas in a rectangular box of volume V reads as:

H = Ĥ − µN̂ =
∫

ψ†(r)
(
− ∇

2

2m
− µ

)
ψ(r) dr , (12)

where the integration is over the given volume V. Assuming periodic continuation of the box, the field
operators can be expanded in plane waves,

ψ(r) = ∑
k

ak ϕk(r) , ϕk(r) =
1√
V

eik·r , (13)

which gives:

H = ∑
k

ωka†
k ak

(
ωk =

k2

2m
− µ

)
. (14)

The total number of particles is the sum:

N = N0 + N1 , N1 = ∑
k 6=k0

nk , (15)
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where N0 is the number of condensed particles, while N1 is the number of uncondensed particles, with
the momentum distribution:

nk ≡ 〈a†
k ak〉 =

(
eβωk − 1

)−1
. (16)

Here, β = 1/T is the inverse temperature. For a large number of particles, the sums over momenta can
be represented as the integrals,

∑
k

nk → V
∫

nk
dk

(2π)d ,

where d is spatial dimensionality. In the case of isotropic functions under the integrals, it is possible to
pass to spherical coordinates. However, it is necessary to take into account that for a finite system, the
values of the wave vectors start not from zero, but from a finite minimal momentum k0 that can be
estimated as:

k0 =
2π

L
=

2π

aN1/d , (17)

with the box volume:
V = Ld , L = aN1/d ,

where a is the mean interparticle distance. Thus, the integration over the momenta takes the form:∫ dk
(2π)d →

2
(4π)d/2Γ(d/2)

∫ ∞

k0

kd−1 dk , (18)

where the lower limit is given by the cutoff prescribed by the minimal quantity k0. Then, the number
of uncondensed particles becomes proportional to the modified Bose function:

gn(z) ≡
1

Γ(n)

∫ ∞

u0

zun−1

eu − z
du , (19)

with z ≡ exp(βµ) being the fugacity and where the lower limit is given by the cutoff:

u0 =
k2

0
2mT

=
ε0

T
(20)

defined by the minimal energy:

ε0 =
2π2

ma2 N−2/d . (21)

Since the minimal energy (21) tends to zero for large N, it is admissible to keep in mind that:

u0 � 1 (N � 1) . (22)

In this way, the relative variance (11) can be expressed through the derivative of the modified Bose
function (19). The latter differs from the standard Bose function by the existence of a nonzero lower
integration limit defined by the minimal wave vector.

3.2. Fluctuations above the Condensation Temperature

At temperatures above the condensation point, there are no condensed particles, so that the total
number of particles reads as:

N =
V
λd

T
gd/2(z) (T ≥ Tc) , (23)

where:

λT ≡
√

2π

mT
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is the thermal wavelength. Hence, the relative variance (11) is:

var(N̂)

N
=

z
ρλd

T

∂gd/2(z)
∂z

(T > Tc) , (24)

where ρ ≡ N/V is the particle density.
Estimating the Bose function above Tc, where z < 1, we find:

gn(z) = −
z

(1− z)Γ(1 + n)

[
un

0 −
nu1+n

0
(1 + n)(1− z)

]
(n < 0 , z < 1) . (25)

In particular,

g−1/2(z) = −
z√

π(1− z)

(
u−1/2

0 +
u1/2

0
1− z

)
(z < 1) (26)

and:
g0(z) = −

z
1− z

(z < 1) . (27)

Calculating the derivatives of the modified Bose functions requires being attentive, since some of
the derivatives are different from those for the standard Bose functions. Generally, we have:

∂gn(z)
∂z

=
1
z

gn−1(z) +
un−1

0
Γ(n)(1− z + u0)

. (28)

Using the smallness of u0, we can write:

un−1
0

1− z + u0
' 1

1− z

(
un−1

0 −
un

0
1− z

)
(z < 1) .

Therefore, for n < 1, we find:

∂gn(z)
∂z

= −
un

0
(1− z)2Γ(1 + n)

(n < 1 , z < 1) ; (29)

while for n > 1, keeping the main terms, we get:

∂gn(z)
∂z

=
1
z

gn−1(z) (n > 1 , z < 1) . (30)

We shall also need the derivatives:

∂g1/2(z)
∂z

= −
2u1/2

0√
π(1− z)2 (d = 1 , z < 1) ,

∂g1(z)
∂z

= − u0

(1− z)2 (d = 2 , z < 1) ,

∂g3/2(z)
∂z

=
1
z

g1/2(z) (d = 3 , z < 1) .

For the relative variance, depending on the space dimensionality, we obtain:

var(N̂)

N
= − 2z√

π(1− z)2ρλT

( ε0

T

)1/2
(d = 1 , T > Tc) ,

var(N̂)

N
= − z

(1− z)2ρλ2
T

( ε0

T

)
(d = 2 , T > Tc) ,
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var(N̂)

N
=

1
ρλ3

T
g1/2(z) (d = 3 , T > Tc) . (31)

The negative values of the variance for d = 1 and d = 2 show that these low-dimensional systems are
unstable. However, the gas is stable in three dimensions.

As follows from the derivative:

∂gd/2(z)
∂z

=
1
z

g(d−2)/2(z) (d > 2 , z < 1) , (32)

the system is stable for d > 2. That is, the critical spatial dimension, above which the uncondensed gas
in a rectangular box is stable, is dc = 2, so that the stability condition is:

d > dc = 2 (T > Tc) . (33)

3.3. Condensation Temperature of a Gas in a Rectangular Box

At the temperature of Bose condensation, the chemical potential becomes zero, µ = 0, because of
whuich z = 1. The total number of particles:

N =
V
λd

T
gd/2(1) (T = Tc) (34)

defines the critical temperature:

Tc =
2π

m

[
ρ

gd/2(1)

]2/d
. (35)

For different dimensionalities, we have:

g1/2(1) =
2√
π

u−1/2
0 (d = 1) ,

g1(1) = − ln u0 (d = 2) ,

g3/2(1) = ζ(3/2) (d = 3) .

This gives the critical temperatures for a one-dimensional system:

Tc =
πρ√
2m

ε1/2
0 (d = 1) , (36)

and for a two-dimensional system:

Tc =
2πρ

m ln(Tc/ε0)
(d = 2) . (37)

Iterating the latter equation and taking into account that:

Tc

ε0
� exp

(
2πρ

mε0

)
, ε0 ∝ N−2/d (N � 1) ,

we obtain:
Tc =

2πρ

m ln(2πρ/mε0)
(d = 2) . (38)

For a three-dimensional box, we have the known result:

Tc =
2π

m

[
ρ

ζ(3/2)

]2/3
(d = 3) . (39)
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The critical temperatures at a large N � 1 scale as:

Tc ∝
1
N

(d = 1) ,

Tc ∝
1

ln N
(d = 2) ,

Tc ∝ const (d = 3) . (40)

For d ≤ 2, the critical temperature diminishes to zero as N increases. It remains finite for d > 2. Recall
that, as is found above, the system is unstable for d ≤ 2. Thus, the Bose gas in a box is stable in the
case where the critical temperature remains finite for large N.

3.4. Fluctuations below Critical Temperature

Below the critical temperature, there appears the Bose–Einstein condensate, so that the
number-of-particle operator becomes the sum of the number of condensed particles N0 and the
number-of-particle operator N̂1 of uncondensed particles,

N̂ = N0 + N̂1 (T < Tc) . (41)

When the condensate function η is introduced by means of the Bogolubov shift [28–30] of the
field operator:

ψ(r)→ η(r) + ψ1(r) ,

then particle fluctuations are defined by the fluctuations of uncondensed particles (see the detailed
explanations in [3,9,16–18]),

var(N̂) = var(N̂1) .

The average number of uncondensed particles is:

N1 =
V
λd

T
gd/2(1) (T < Tc) . (42)

Therefore, the relative particle variance reads as:

var(N̂)

N
=

1
ρλd

T
lim
z→1

∂gd/2(z)
∂z

(T < Tc) . (43)

For a mesoscopic system, we have:

lim
z→1

∂gn(z)
∂z

= gn−1(1) +
un−2

0
Γ(n)

. (44)

Notice that the last term here would be absent for a macroscopic system. In particular,

lim
z→1

∂g1/2(z)
∂z

= g−1/2(1) +
u−3/2

0√
π

.

Since:
g−1/2(1) = −

1
3
√

π
u−3/2

0 ,

we find:

lim
z→1

∂g1/2(z)
∂z

=
2

3
√

π
u−3/2

0 .



Symmetry 2019, 11, 603 8 of 23

We also need the limits:

lim
z→1

∂g1(z)
∂z

=
1
u0

,

and:

lim
z→1

∂g3/2(z)
∂z

= g1/2(1) +
2√
π

u−1/2
0 .

Using g1/2(1) from the previous subsection, we get:

lim
z→1

∂g3/2(z)
∂z

=
4√
π

u−1/2
0 .

Generally, from the expression:

lim
z→1

∂gd/2(z)
∂z

= g(d−2)/2(1) +
u(d−4)/2

0
Γ(d/2)

(45)

we see that the last term here increases with N by a power-law, when d < 4, while it increases
logarithmically for d = 4,

lim
z→1

∂g2(z)
∂z

= 1− ln u0 (d = 4) .

For the relative variance (43), we obtain:

var(N̂)

N
=

2
3
√

πρλT

(
T
ε0

)3/2
(d = 1) ,

var(N̂)

N
=

1
ρλ2

T

(
T
ε0

)
(d = 2) ,

var(N̂)

N
=

4√
πρλ3

T

(
T
ε0

)1/2
(d = 3) ,

var(N̂)

N
=

1
ρλ4

T

(
T
ε0

)
(d = 4) . (46)

Keeping in mind that ε0 ∝ N−2/d, the scaling of these expressions with respect to N is as follows:

var(N̂)

N
∝ N3 (d = 1) ,

var(N̂)

N
∝ N (d = 2) ,

var(N̂)

N
∝ N1/3 (d = 3) ,

var(N̂)

N
∝ ln N (d = 4) . (47)

This shows that for all dimensions below and including four, particle fluctuations are anomalous,
corresponding to an unstable systems. In that sense, the dimension four is critical, implying that the
stability condition for a condensed gas in a box is:

d > dc = 4 (T < Tc) . (48)
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4. Ideal Gas in a Power-Law Trap

Power-law traps are the most often used devices for trapping particles. Here, we study particle
fluctuations and the related stability of mesoscopic clouds in such traps.

4.1. Modified Semiclassical Approximation

The general form of confining potentials, employed in power-law traps, can be represented as:

U(r) =
d

∑
α=1

ωα

2

∣∣∣∣ rα

lα

∣∣∣∣nα

, (49)

where:
lα ≡

1√
mωα

is the effective trap radius in the α direction. As a whole, a trap can be characterized by the effective
trap frequency ω0 and effective length l0 connected by the relations:

ω0 ≡
(

d

∏
α=1

ωα

)1/d

=
1

ml2
0

, l0 ≡
(

d

∏
α=1

lα

)1/d

=
1√

mω0
. (50)

In the limit nα → ∞, we return to a rectangular box.
When the effective trap frequency is much lower than temperature,

ω0

T
� 1 , (51)

it is possible to resort to the semiclassical approximation that, however, needs to be modified for
considering mesoscopic systems [18,31].

In the semiclassical approximation, one defines the density of states:

ρ(ε) =
(2m)d/2

(4π)d/2Γ(d/2)

∫
Vε

[ε−U(r)]d/2−1 dr ,

in which:
Vε ≡ {r : U(r) ≤ ε}

is the volume available for particle motion.
For trapped particles, an important notion is the confining dimension [18,31]:

D ≡ d +
d

∑
α=1

2
nα

. (52)

The density of states for the power-law potential (49) reduces to:

ρ(ε) =
εD/2−1

γDΓ(D/2)
, (53)

where we use the notation:

γD ≡
πd/2

2D/2

d

∏
α=1

ω1/2+1/nα
α

Γ(1 + 1/nα)
.

In the normal state above Tc, the number of particles is given by the formula:

N =
TD/2

γD
gD/2(z) (T ≥ Tc) . (54)
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We again meet the Bose function that has to be modified according to the definition (19) by using the
integral cutoff:

u0 =
ε0

T
(ε0 ∼ ω0) , (55)

with ε0 being the lowest energy level in the trap, which is of the order of ω0.

4.2. Condensation Temperature of a Gas in a Power-Law Trap

At the critical temperature Tc, we have µ = 0 and z = 1. Then, Equation (54) yields:

Tc =

[
γD N

gD/2(1)

]2/D
. (56)

The modified Bose function, depending on the confining dimension, takes the forms:

gD/2(1) =
2

(2− D)Γ(D/2)

(
T
ε0

)1−D/2
(D < 2) ,

g1(1) = ln
T
ε0

(D = 2) ,

gD/2(1) = ζ

(
D
2

)
(D > 2) .

If D < 2, the spatial dimension can only be d = 1, when:

γD =

√
π

Γ(D)

(ω0

2

)D/2
(d = 1) .

Then, the critical temperature is:

Tc =

√
π

Γ(D)

(
1− D

2

)
Γ
(

D
2

)(
ω0

2ε0

)D/2
Nε0 (D < 2 , d = 1) . (57)

The confining dimension equals two, D = 2, when d = 1 and n = 2, so that:

γ2 = ω0 (D = 2 , d = 1 , n = 2) .

This yields the critical temperature:

Tc =
Nω0

ln(Tc/ε0)
(D = 2 , d = 1) . (58)

For large N, one has:
Tc

ε0
� exp

(
ω0

ε0
N
)

,

since for a one-dimensional harmonic oscillator, ε0 = ω0/2. Because of this, the critical temperature
(58) can be simplified to:

Tc =
Nω0

ln(2N)
. (59)

For the confining dimension larger than two, the critical temperature is:

Tc =

[
γD N

ζ(D/2)

]2/D
(D > 2) . (60)
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In the case of harmonic traps, when nα = 2, hence D = 2d and γD = ωd
0 , the critical

temperature becomes:

Tc =

[
N

ζ(d)

]1/d
ω0 (nα = 2 , d > 1) .

4.3. Scaling with Respect to the Particle Number

As is explained in Section 2, extensive observables are proportional to the number of particles
N, when this number is large. This definition prescribes the scaling of the system characteristics with
respect to N. As a representative of an observable quantity, we may take, e.g., internal energy:

〈Ĥ〉 = 〈H〉+ µN . (61)

This is an extensive quantity satisfying the condition:

〈Ĥ〉
N
' const (N � 1) . (62)

For the considered case of a gas in a power-law trap, we have:

〈Ĥ〉
N

=
Dg1+D/2(z)

2NγD
T1+D/2 . (63)

The function g1+D/2(z) is finite for all D > 0 and all z. Hence, the condition (62) implies:

NγD ' const (N � 1); . (64)

To make the consideration slightly less cumbersome, let us set the powers nα = n for the trapping
potential. Then, the confining dimension is:

D =

(
1 +

2
n

)
d . (65)

γD becomes:

γD =
πd/2

Γd(1 + 1/n)

(ω0

2

)D/2
,

which tells us that:
γD ∝ ωD/2

0 (N � 1) .

Therefore, ω0 scales as:

ω0 ∝
1

N2/D (N � 1) . (66)

Using this scaling and the fact that ω0 ∼ ε0, we see that the critical temperatures from the previous
subsection behave as:

Tc ∝
1

N2/D−1 (D < 2) ,

Tc ∝
1

ln N
(D = 2) ,

Tc ∝ const (D > 2) . (67)
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4.4. Fluctuations above the Condensation Temperature

Particle fluctuations above the condensation temperature are described by the formula:

var(N̂)

N
=

TD/2

NγD
z

∂gD/2(z)
∂z

(T > Tc) , (68)

where z < 1. For the modified Bose function, we have:

∂gm(z)
∂z

=
1
z

gm−1(z) +
1

(1− z)Γ(m)

(
um−1

0 −
um

0
1− z

)
(z < 1) , (69)

with the value:

gm−1(z) = −
z

(1− z)Γ(m)

[
um−1

0 − m− 1
m(1− z)

um
0

]
(m < 1 , z < 1) (70)

for m < 1. Summarizing, we have the derivatives:

∂gm(z)
∂z

= −
um

0
(1− z)2Γ(1 + m)

(m < 1 , z < 1) ,

∂g1(z)
∂z

= − u0

(1− z)2 (m = 1 , z < 1) ,

∂gm(z)
∂z

=
1
z

gm−1(z) (m > 1 , z < 1) .

From here, we find the relative variance:

var(N̂)

N
= − zTD/2

(1− z)2NγDΓ(1 + D/2)

( ε0

T

)D/2
(D < 2 , T > Tc) ,

var(N̂)

N
= − zT

(1− z)2Nγ2

( ε0

T

)
(D = 2 , T > Tc) ,

var(N̂)

N
=

TD/2

NγD
gD/2−1(z) (D > 2 , T > Tc) , (71)

characterizing particle fluctuations above the critical temperature. For D ≤ 2, the variance is negative,
which means instability. The system is stable only for D > 2, giving the stability condition:

d +
d

∑
α=1

2
nα

> 2 (T > Tc) . (72)

4.5. Fluctuations below the Condensation Temperature

Below the condensation temperature, where µ = 0 and z = 1, the number of uncondensed
particles reads as:

N1 =
TD/2

γD
gD/2(1) (T ≤ Tc) . (73)

The variance of the total number of particles coincides with that of the uncondensed particles, which
leads to:

var(N̂)

N
=

TD/2

NγD
lim
z→1

∂gD/2(z)
∂z

(T < Tc) . (74)
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For the derivative in the right-hand side of the above formula, we have:

lim
z→1

∂gD/2(z)
∂z

= gD/2−1(1) +
uD/2−2

0
Γ(D/2)

. (75)

Employing the values:

gD/2−1(1) =
2

(4− D)Γ(D/2− 1)
uD/2−2

0 (D < 4) ,

g1(1) = − ln u0 (D = 4) ,

we get the derivatives:

lim
z→1

∂gD/2(z)
∂z

=

[
2

(4− D)Γ(D/2− 1)
+

1
Γ(D/2)

]
uD/2−2

0 (D < 4) ,

lim
z→1

∂g2(z)
∂z

= − ln u0 (D = 4) ,

lim
z→1

∂gD/2(z)
∂z

= gD/2−1(1) = ζ

(
D
2
− 1
)

(D > 4) .

In that way, we come to the relative variances:

var(N̂)

N
=

TD/2

NγD

[
2

(4− D)Γ(D/2− 1)
+

1
Γ(D/2)

] (
T
ε0

)2−D/2
(D < 4) ,

var(N̂)

N
=

T2

Nγ4
ln
(

T
ε0

)
(D = 4) ,

var(N̂)

N
=

TD/2

NγD
ζ

(
D
2
− 1
)

(D > 4) . (76)

Keeping in mind that ε0 ∝ N−2/D results in the scaling:

var(N̂)

N
∝ N(4−D)/D (D < 4) ,

var(N̂)

N
∝ ln N (D = 4) ,

var(N̂)

N
∝ const (D > 4) . (77)

This tells us that the system is stable only for D > 4. Therefore, the stability condition is:

d +
d

∑
α=1

2
nα

> 4 (T < Tc) . (78)

Notice that in the case of the often considered harmonic potential, when nα = 2, we have D = 2d
and γD = ωd

0 . Then, the stability condition (78) reduces to the condition d > 2. The relative particle
variance reads as:

var(N̂)

N
=

ζ(d− 1)
ζ(d)

(
T
Tc

)d
(nα = 2 , d > 2) .
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5. Interacting Bose System above the Condensation Temperature

The grand Hamiltonian for a system of interacting Bose particles is:

H =
∫

ψ†(r)
(
− ∇

2

2m
− µ

)
ψ(r) dr

+
1
2

∫
ψ†(r)ψ†(r′)Φ(r− r′)ψ(r′)ψ(r) drdr′ . (79)

For generality, we consider a nonlocal isotropic interaction potential Φ(r) = Φ(r), where r ≡ |r|. The
integration is assumed to be over a rectangular box of volume V confining the system.

In the Hartree–Fock approximation, the Hamiltonian takes the form:

HHF = EHF +
∫

ψ†(r)
(
− ∇

2

2m
− µ

)
ψ(r) dr

+
∫

Φ(r− r′)
[
ρ(r′)ψ†(r)ψ(r) + ρ(r′, r)ψ†(r′)ψ(r)

]
drdr′ , (80)

where:
EHF = − 1

2

∫
Φ(r− r′)

[
ρ(r)ρ(r′) + | ρ(r, r′) |2

]
drdr′

and the notations are used for the single-particle density matrix:

ρ(r, r′) = 〈 ψ†(r′)ψ(r)〉 (81)

and the particle density:
ρ(r) = ρ(r, r) = 〈 ψ†(r)ψ(r)〉 . (82)

Employing the expansion of the field operators over plane waves, as in Equation (13), we get
the Hamiltonian:

HHF = EHF + ∑
k

ωka†
k ak , (83)

in which:
EHF = − 1

2
ρΦ0N − 1

2V ∑
kp

nknpΦk+p ,

Φk is a Fourier transform of Φ(r), and:

Φ0 =
∫

Φ(r) dr . (84)

The momentum distribution is given by the expression (16), with the spectrum:

ωk =
k2

2m
+ ρΦ0 +

1
V ∑

p
npΦk+p − µ . (85)

The function np possesses a maximum at p → 0, because of which it is possible to use the
approximation [32,33]:

∑
p

npΦk+p
∼= Φk ∑

p
np (86)

giving:

ωk =
k2

2m
+ ρ(Φ0 + Φk)− µ . (87)
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Introducing the effective interaction radius by the relation:

r2
e f f ≡

∫
Φ(r)r2dr∫
Φ(r)dr

=
4π

Φ0

∫ ∞

0
Φ(r)r4 dr (88)

shows that the long-wave limit of Φk is:

Φk '
(

1− 1
6

k2r2
e f f

)
Φ0 . (89)

Then, the spectrum (87) can be represented as:

ωk '
k2

2m∗
− µe f f (k→ 0) , (90)

with the effective mass:
m∗ ≡ m

1− ρΦ0r2
e f f /3

(91)

and effective chemical potential:
µe f f ≡ µ− 2ρΦ0 . (92)

In this approximation, the number of particles acquires the same form (23), however with
the notations:

λT ≡
√

2π

m∗T
, z ≡ exp(βµe f f ) . (93)

Using again the modified Bose function (19) and following the same analysis as in Section 3, we come
to the conclusion that the system is stable for d > 2, when T > Tc. The difference is that now instead
of mass m, there is the effective mass m∗, and at the critical temperature, we have:

µe f f = 0 , µ = 2ρΦ0 (T = Tc) .

Therefore, the critical temperature becomes:

Tc =
2π

m∗

[
ρ

gd/2(1)

]2/d
. (94)

As an example, let us consider the realistic three-dimensional case. Using the Robinson
representation (see the details in review [18]), we can find the behavior of the effective chemical
potential at high temperatures:

µe f f = T ln
(

ρλ3
T

)
(T � Tc) (95)

and at the temperature approaching the critical point from above,

µe f f ' −T
ζ2(3/2)

4π

[
1−

(
Tc

T

)3/2
]2

. (96)

Then, the isothermal compressibility:

κT =
g1/2(z)
ρ2Tλ3

T
(97)

at high temperatures is:

κT '
1

ρT
(T � Tc) , (98)
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while close to the critical point, it is:

κT '
0.921

ρT

[
1−

(
Tc

T

)3/2
]−1

; (99)

respectively, particle fluctuations, described by the relative variance:

var(N̂)

N
= ρTκT =

g1/2(z)
ρλ3

T
, (100)

at high temperatures behave as:
var(N̂)

N
' 1 (T � Tc), (101)

and close to the critical point, we get:

var(N̂)

N
' 0.921

[
1−

(
Tc

T

)3/2
]−1

. (102)

Outside of the critical temperature itself, particle fluctuations are thermodynamically normal. The
divergence of the compressibility at the critical point signifies a second-order phase transition. At the
point of the phase transition, the system is not stable, and the fluctuations do not need to be finite.

6. Interacting Bose System below the Condensation Temperature

In Section 3, it is proven that the ideal Bose gas, confined in a box, is stable below the condensation
temperature only for d > 4. In the present section, we show that interactions stabilize the system,
making it stable already for d = 3.

6.1. Self-Consistent Approach

For describing a Bose system with the Bose–Einstein condensate, we employ the self-consistent
approach [16–18,24,34,35], providing a gapless spectrum, correct thermodynamics, the validity of all
conservation laws, and good agreement with Monte Carlo simulations and experimental data.

The energy Hamiltonian has the form:

Ĥ =
∫

ψ̂†(r)
(
− ∇

2

2m

)
ψ̂(r) dr

+
1
2

∫
ψ̂†(r)ψ̂†(r′)Φ(r− r′)ψ̂(r′)ψ̂(r) drdr′ . (103)

The genuine Bose–Einstein condensation necessarily requires global gauge symmetry
breaking [6,9,17,18]. Finite systems, strictly speaking, do not exhibit this symmetry breaking.
However, a system with a large number of particles N � 1 enjoys asymptotic symmetry breaking [36]
in the sense that the system properties asymptotically, with respect to N, are close to the system with
broken symmetry. The global gauge symmetry can be broken by the Bogolubov shift [28–30]:

ψ̂(r) = η(r) + ψ1(r) , (104)

in which the condensate function η(r) and the operator of uncondensed particles ψ1(r) are
mutually orthogonal, ∫

η∗(r)ψ1(r) dr = 0 (105)
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and the operator of uncondensed particles satisfies the condition:

〈ψ1(r)〉 = 0 . (106)

The number of condensed particles is:

N0 =
∫
|η(r)|2 dr , (107)

while the number of uncondensed particles is given by the average:

N1 = 〈N̂1〉 , N̂1 =
∫

ψ†
1(r)ψ1(r) dr . (108)

The grand Hamiltonian reads as:

H = Ĥ − µ0N0 − µ1N̂1 − Λ̂ , (109)

where:
Λ̂ =

∫ [
λ(r)ψ†

1(r) + λ∗(r)ψ1(r)
]

dr

and µ0, µ1, and λ(r) are Lagrange multipliers guaranteeing the validity of the normalizations (107)
and (108), as well as condition (106).

The evolution equation for the condensate function can be written as:

i
∂

∂t
η(r, t) =

〈
δH

δη∗(r, t)

〉
(110)

and the equation for the operator of uncondensed particles as:

i
∂

∂t
ψ1(r, t) =

δH
δψ†

1(r, t)
. (111)

Keeping in mind, as usual, the periodic continuation of the box, we expand the field
operators in plane waves, as in (13), and assume the existence of the Fourier representation for
the interaction potential:

Φk =
∫

Φ(r)e−ik·r dr , Φ(r) =
1
V ∑

k
Φkeik·r . (112)

Then, we get the normal density matrix:

ρ1(r, r′) = 〈ψ†
1(r
′)ψ1(r)〉 =

1
V ∑

k 6=0
nkeik·(r−r′) (113)

and the anomalous matrix:

σ1(r, r′) = 〈ψ1(r′)ψ1(r)〉 =
1
V ∑

k 6=0
σkeik·(r−r′), (114)

in which:
nk ≡ 〈a†

k ak〉 , σk ≡ 〈aka−k〉 . (115)

The condensate function η(r) = η defines the condensate density:

ρ0 ≡
N0

V
= |η|2 . (116)
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The density of uncondensed particles is:

ρ1 ≡
N1

V
= ρ1(r, r) =

1
V ∑

k
nk . (117)

The diagonal anomalous matrix gives the anomalous average:

σ1 ≡ σ1(r, r) =
1
V ∑

k
σk . (118)

The average density of particles is the sum:

ρ ≡ N
V

= ρ0 + ρ1 . (119)

Then, we use the Hartree–Fock–Bogolubov approximation and accomplish the Bogolubov
canonical transformation:

ak = ukbk + v∗−kb†
−k , bk = u∗k ak − v∗k a†

−k ,

where uk and vk are chosen so as to diagonalize the Hamiltonian. In that way, we obtain the
diagonalized Hamiltonian:

HB = EB + ∑
k

εkb†
k bk , (120)

in which:

EB = − 1
2

NρΦ0 − ρ0 ∑
p
(np + σp)Φp −

1
2V ∑

kp
(nknp + σkσp)Φk+p +

1
2 ∑

k
(εk −ωk) ,

the particle spectrum is:

εk =
√

ω2
k − ∆2

k , (121)

and where:

ωk =
k2

2m
+ ∆ + ρ0(Φk −Φ0) +

1
V ∑

p
np(Φk+p −Φp) ,

∆k = ρ0Φk +
1
V ∑

p
σpΦk+p , ∆ ≡ lim

k→0
∆k = ρ0Φ0 +

1
V ∑

p
σpΦp . (122)

For the expressions in (115), we find:

nk =
ωk
2εk

coth
( εk

2T

)
− 1

2
, σk = −

∆k
2εk

coth
( εk

2T

)
. (123)

The chemical potentials are:

µ0 = ρΦ0 +
1
V ∑

k
(nk + σk)Φk , µ1 = ρΦ0 +

1
V ∑

k
(nk − σk)Φk . (124)

In the long-wave limit, we can use the expansion:

Φk+p ' Φp +
k2

2
Φ′′p (k→ 0) ,

where:

Φ′′p ≡
∂2Φp

∂p2 .
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Then, the spectrum (121) becomes of the phonon type:

εk ' ck (k→ 0) , (125)

with the sound velocity:

c =

√
∆

me f f
(126)

and with the notation for the effective mass:

me f f ≡
m

1 + m
V ∑p(np − σp)Φ′′p

. (127)

Actually, Expression (126), which can be written as:

me f f c2 = ∆ ,

is the equation:
mc2

1 + m
V ∑p(np − σp)Φ′′p

= ρ0Φ0 +
1
V ∑

p
σpΦp , (128)

defining the sound velocity c.
To simplify the consideration, we can resort to the approximation (86), similarly, to which we

can write:

∑
p

σpΦk+p
∼= Φk ∑

p
σp . (129)

This gives:
1
V ∑

p
(np − σp)Φ′′p = (ρ1 − σ1)Φ′′0 ,

where:
Φ′′0 = lim

p→0
Φ′′p = − 4π

3

∫ ∞

0
Φ(r)r4 dr .

In view of the notation for the effective interaction radius (88), we get:

Φ′′0 = − 1
3

Φ0r2
e f f .

Then, the effective mass (127) acquires the form:

me f f =
m

1 + (σ1 − ρ1)Φ0mr2
e f f /3

. (130)

In the approximations (86) and (129), the chemical potentials (124) become:

µ0 = ρΦ0 + (ρ1 + σ1)Φ0 , µ1 = ρΦ0 + (ρ1 − σ1)Φ0 . (131)

Furthermore, we have:

ωk =
k2

2m
+ ∆ + ρ(Φk −Φ0) ∆k = (ρ0 + σ1)Φk , ∆ = (ρ0 + σ1)Φ0 . (132)

The spectrum (121) can be written as:

ε2
k =

[
k2

2m
+ (ρ1 − σ1)(Φk −Φ0)

] [
k2

2m
+ ρ(Φk −Φ0) + (ρ0 + σ1)(Φk + Φ0)

]
. (133)
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The density of uncondensed particles is:

ρ1 =
∫ [

ωk
2εk

coth
( εk

2T

)
− 1

2

]
dk

(2π)3 . (134)

The anomalous average (118) can be represented in the form:

σ1 = −
∫ ∆k

2εk

dk
(2π)3 −

∫ ∆k
2εk

[
coth

( εk
2T

)
− 1
] dk

(2π)3 . (135)

When the first term here diverges, which happens for the local interaction, we can use dimensional
regularization [18].

6.2. Particle Fluctuations

The number-of-particles variance can be found by involving the formula:

var(N̂)

N
= 1 + ρ

∫
[g(r)− 1] dr , (136)

in which:
g(r12) =

1
g2 〈ψ̂

†(r1)ψ̂
†(r2)ψ̂(r2)ψ̂(r1)〉 (137)

is the pair correlation function, with r12 ≡ r1 − r2.
Accomplishing the Bogolubov shift (104), we use the Hartree–Fock–Bogolubov (HFB) decoupling

for the expressions containing the operators ψ1. Since, mathematically, the HFB approximation is
of second order with respect to the products of the operators ψ1, it is necessary to leave in the pair
correlation function only the terms of second order with respect to these operators [3,16–18,23,24]. As
a result, we obtain: ∫

[g(r)− 1] dr =
2
ρ

lim
k→0

(nk + σk) . (138)

In this way, for the relative variance, we find:

var(N̂)

N
= 1 + 2 lim

k→0
(nk + σk) . (139)

For small k, when εk tends to zero, we have:

nk '
T∆k

ε2
k

+
∆k

12T
+

T
2∆k

− 1
2

+

(
∆k
3T
− T

∆k
−

∆3
k

90T3

)
ε2

k
8∆2

k
,

σk ' −
T∆k

ε2
k
− ∆k

12T
+

∆kε2
k

720T3 (εk → 0) . (140)

Therefore:

lim
k→0

(nk + σk) =
1
2

(
T
∆
− 1

)
,

with:
∆ = me f f c2 = (ρ0 + σ1)Φ0 .

Thus, we come to the expression:
var(N̂)

N
=

T
me f f c2 ; (141)
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respectively, the compressibility is:

κT =
var(N̂)

NρT
=

1
ρme f f c2 . (142)

Taking into account Formula (126) leads to the variance:

var(N̂)

N
=

T
(ρ0 + σ1)Φ0

. (143)

Note that Expression (143) is valid at zero temperature, as well. This is easy to check considering
the quantities (123) at zero temperature,

nk =

√
ε2

k + ∆2
k

2εk
− 1

2
, σk = −

∆k
2εk

(T = 0) .

From here, in the long-wave limit, we have:

nk '
∆k
2εk

+
εk

4∆k
− 1

2
(εk → 0 , T = 0) .

Hence:
lim
k→0

(nk + σk) = −
1
2

(T = 0)

and:
var(N̂)

N
= 0 (T = 0) .

The above result for the relative variance (143) can be generalized for nonuniform systems [37] by
involving the local-density approximation, which yields:

var(N̂)

N
=

T
N

∫
ρ(r)
∆(r)

dr , (144)

where:
∆(r) = [ρ0(r) + σ1(r)]Φ0 . (145)

Particle fluctuations in a three-dimensional Bose-condensed system of interacting particles
are thermodynamically normal in both cases, when particles are in a box or in a nonuniform
external potential.

7. Conclusions

Particle fluctuations in Bose systems were studied. Investigating the behavior of these fluctuations
is important because they are directly connected with isothermal compressibility and define the system
stability with respect to pressure variations. Thermodynamically-anomalous fluctuations signify
system instability; while thermodynamically-normal fluctuations mean that the equilibrium system is
stable. The obtained results are as follows.

The ideal Bose gas confined in a rectangular box is stable, depending on the temperature, in
spatial dimensions:

d > 2 (T > Tc) ,

d > 4 (T < Tc) .
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The stability of the ideal Bose gas in a power-law trap depends on the confining dimension:

D ≡ d +
d

∑
α=1

2
nα

.

This gas is stable for the confining dimensions:

D > 2 (T > Tc) ,

D > 4 (T < Tc) .

Interactions stabilize Bose-condensed systems, so that an interacting system with Bose–Einstein
condensate becomes stable at d = 3 for either a system in a box or in an external potential.

Nonlocal interactions with a stronger strength or with a larger interaction radius increase the
effective mass, hence diminishing the condensation temperature.
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