# The Backward in Time Problem of Double Porosity Material with Microtemperature

## Abstract

**:**

## 1. Introduction

- -
- in the first part of the paper, in case of the bounded domains the impossibility of time localization of solutions is obtained; this study is equivalent to the uniqueness of solutions for the backward in time problem for the case of double porous materials with microtemperature.
- -
- in the second part of the paper, a Phragmen-Lindelof alternative in the case of semi-infinite cylinders is obtained.

## 2. Basic Equations for the Double Porous Materials with Microtemperature

## 3. Main Results Regarding the Impossibility of Localization in Time

**Theorem**

**1.**

**Proof.**

## 4. Phragmen-Lindelof Alternative for the Solution of Backward in Time Problem with Double Porosity and Microtemperature

## 5. Conclusions

## Funding

## Conflicts of Interest

## References

- Barenblatt, G.I.; Zheltov, I.P. On the Basic Equations of Seepage of Homo- geneous Liquids in Fissured Rock. Akad. Nauk SSSR
**1960**, 132, 545–548. [Google Scholar] - Barrenblatt, G.I.; Zheltov, I.P.; Kockina, I.N. Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks (Strata). Prikl. Mat. Mekh.
**1960**, 24, 1286–1303. [Google Scholar] [CrossRef] - Berryman, J.G.; Wang, H.F. Elastic Wave Propagation and Attenuation in a Double-porosity Dual-permeability Medium. Int. J. Rock Mech. Min. Sci.
**2000**, 37, 63–78. [Google Scholar] [CrossRef] - Khalili, N.; Selvadurai, A.P.S. A Fully Coupled Constitutive Model for Thermo-hydro-mechanical Analysis in Elastic Media with Double Porosity. Geophys. Res. Lett.
**2003**, 30, 1–5. [Google Scholar] [CrossRef] - Cowin, S.C. Bone Poroelasticity. J. Biomech.
**1999**, 32, 217–238. [Google Scholar] [CrossRef] - Straughan, B. Stability and Uniqueness in Double Porosity Elasticity. Int. J. Eng. Sci.
**2013**, 65, 1–8. [Google Scholar] [CrossRef] - Svanadze, M. Plane waves and boundary value problems in the theory of elasticity for solids with double porosity. Acta Appl. Math.
**2012**, 122, 461–471. [Google Scholar] [CrossRef] - Zhao, Y.; Chen, M. Fully Coupled Dual-porosity Model for Anisotropic For- mations. Int. J. Rock Mech. Min. Sci.
**2014**, 43, 1128–1133. [Google Scholar] [CrossRef] - Nunziato, J.W.; Cowin, S.C. A Nonlinear Theory of Elastic Materials With Voids. Arch. Rat. Mech. Anal.
**1979**, 72, 175–201. [Google Scholar] [CrossRef] - Iesan, D.; Quintanilla, R. On a theory of thermoelastic materials with a double porosity structure. J. Therm. Stress
**2014**, 37, 1017–1036. [Google Scholar] [CrossRef] - Quintanilla, R. Imposibility of localization in linear thermoelasticity with voids. Mech. Res. Commun.
**2007**, 34, 522–527. [Google Scholar] [CrossRef] - Flavin, J.N.; Knops, R.J.; Payne, L.E. Decay estimates for the constrained elastic cylinder of variable cross-sections. Q. Appl. Math.
**1989**, 47, 325–350. [Google Scholar] [CrossRef] - Horgan, C.O.; Quintanilla, R. Spatial decay of transient end effects in functionally graded heat conducting materials. Q. Appl. Math.
**2001**, 59, 529–542. [Google Scholar] [CrossRef] [Green Version] - Horgan, C.O.; Payne, L.E.; Wheeler, L.T. Spatial decay estimates in transient heat conduction. Q. Appl. Math.
**1984**, 42, 119–127. [Google Scholar] [CrossRef] [Green Version] - Flavin, J.N.; Knops, R.J.; Payne, L.E. Energy bounds in dynamical problem for a semi-infinite elastic beam. In Elasticity: Mathematical Methods and Applications; Ellis-Horwood: Chichester, UK, 1989; pp. 101–111. [Google Scholar]
- Florea, O. Harmonic vibrations in thermoelastic dynamics with double porosity structure. Math. Mech. Solids
**2018**. [Google Scholar] [CrossRef] - Marin, M.; Craciun, E.M. Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials. Compos. Part B
**2017**, 126, 27–37. [Google Scholar] [CrossRef] - Bazarra, N.; Fernandez, J.R.; Leseduarte, M.C.; Magaña, A.; Quintanilla, R. On the uniqueness and analiticity in viscoelasticity with double porosity. Asymptot. Anal.
**2019**, 112, 151–164. [Google Scholar] [CrossRef] - Ieşan, D.; Quintanilla, R. Viscoelastic materials with a double porosity structure. Comptes Rendus Mecanique
**2019**, 347, 124–140. [Google Scholar] [CrossRef] - Casas, P.S.; Quintanilla, R. Exponential decay in one-dimensional porous thermoelasticity. Mech. Res. Commun.
**2005**, 32, 625–658. [Google Scholar] [CrossRef] - Casas, P.S.; Quintanilla, R. Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng.
**2005**, 43, 33–47. [Google Scholar] [CrossRef] [Green Version] - Magana, A.; Quintanilla, R. On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity. Assymptot. Anal.
**2006**, 49, 173–187. [Google Scholar] - Magana, A.; Quintanilla, R. On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct.
**2006**, 43, 3414–3427. [Google Scholar] [CrossRef] [Green Version] - Munoz-Rivera, J.; Quintanilla, R. On the time polynomial decay in elastic solids with voids. J. Math. Anal. Appl.
**2008**, 338, 1296–1309. [Google Scholar] [CrossRef] [Green Version] - Pamplona, P.X.; Munoz-Rivera, J.; Quintanilla, R. Stabilization in elastic solids with voids. J. Math. Anal. Appl.
**2009**, 350, 37–49. [Google Scholar] [CrossRef] [Green Version] - Quintanilla, R. Impossibility of localization in thermo-porous-elasticity with microtemperatures. Acta Mecanica
**2009**, 207, 145–151. [Google Scholar] [CrossRef] - Florea, O. Spatial Behavior in Thermoelastodynamics with Double Porosity Structure. Int. J. Appl. Mech.
**2017**, 9, 1750097. [Google Scholar] [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Florea, O.A.
The Backward in Time Problem of Double Porosity Material with Microtemperature. *Symmetry* **2019**, *11*, 552.
https://doi.org/10.3390/sym11040552

**AMA Style**

Florea OA.
The Backward in Time Problem of Double Porosity Material with Microtemperature. *Symmetry*. 2019; 11(4):552.
https://doi.org/10.3390/sym11040552

**Chicago/Turabian Style**

Florea, Olivia A.
2019. "The Backward in Time Problem of Double Porosity Material with Microtemperature" *Symmetry* 11, no. 4: 552.
https://doi.org/10.3390/sym11040552