A Note on the Sequence Related to Catalan Numbers
Abstract
:1. Introduction
2. Proofs of the Theorems
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stanley, R.P. Enumerative Combinatorics: Volume 2 (Cambridge Studieds in Advanced Mathematics); Cambridge University Press: Cambridge, UK, 1997; p. 49. [Google Scholar]
- Chu, W.C. Further identities on Catalan numbers. Discr. Math. 2018, 341, 3159–3164. [Google Scholar] [CrossRef]
- Anthony, J.; Polyxeni, L. A new interpretation of the Catalan numbers arising in the theory of crystals. J. Algebra 2018, 504, 85–128. [Google Scholar]
- Liu, J.C. Congruences on sums of super Catalan numbers. Results Math. 2018, 73, 73–140. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A new approach to Catalan numbers using differential equations. Russ. J. Math. Phys. 2017, 24, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. Some identities of Catalan-Daehee polynomials arising from umbral calculus. Appl. Comput. Math. 2017, 16, 177–189. [Google Scholar]
- Kim, T.; Kim, D.S. Differential equations associated with Catalan-Daehee numbers and their applications. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 2017, 111, 1071–1081. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. Triple symmetric identities for w-Catalan polynomials. J. Korean Math. Soc. 2017, 54, 1243–1264. [Google Scholar]
- Kim, T.; Kwon, H.-I. Revisit symmetric identities for the λ-Catalan polynomials under the symmetry group of degree n. Proc. Jangjeon Math. Soc. 2016, 19, 711–716. [Google Scholar]
- Kim, T. A note on Catalan numbers associated with p-adic integral on Zp. Proc. Jangjeon Math. Soc. 2016, 19, 493–501. [Google Scholar]
- Basic, B. On quotients of values of Euler’s function on the Catalan numbers. J. Number Theory 2016, 169, 160–173. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.T.; Liu, F.F. An integral representation, complete monotonicity, and inequalities of the Catalan numbers. Filomat 2018, 32, 575–587. [Google Scholar] [CrossRef]
- Qi, F.; Shi, X.T.; Mahmoud, M. The Catalan numbers: A generalization, an exponential representation, and some properties. J. Comput. Anal. Appl. 2017, 23, 937–944. [Google Scholar]
- Qi, F.; Guo, B.N. Integral representations of the Catalan numbers and their applications. Mathematics 2017, 5, 40. [Google Scholar] [CrossRef]
- Aker, K.; Gursoy, A.E. A new combinatorial identity for Catalan numbers. Ars Comb. 2017, 135, 391–398. [Google Scholar]
- Dolgy, D.V.; Jang, G.-W.; Kim, D.S.; Kim, T. Explicit expressions for Catalan-Daehee numbers. Proc. Jangjeon Math. Soc. 2017, 20, 1–9. [Google Scholar]
- Ma, Y.K.; Zhang, W.P. Some identities involving Fibonacci polynomials and Fibonacci numbers. Mathematics 2018, 6, 334. [Google Scholar] [CrossRef]
- Zhang, W.P.; Lin, X. A new sequence and its some congruence properties. Symmetry 2018, 10, 359. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Chen, Z.Y. A new identity involving the Chebyshev polynomials. Mathematics 2018, 6, 244. [Google Scholar] [CrossRef]
- Zhao, J.H.; Chen, Z.Y. Some symmetric identities involving Fubini polynomials and Euler numbers. Symmetry 2018, 10, 303. [Google Scholar]
- Zhang, W.P. Some identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q. 2004, 42, 149–154. [Google Scholar]
- Guariglia, E. Entropy and Fractal Antennas. Entropy 2016, 18, 84. [Google Scholar] [CrossRef]
- Guido, R.C. Practical and useful tips on discrete wavelet transforms. IEEE Signal Process. Mag. 2015, 32, 162–166. [Google Scholar] [CrossRef]
- Berry, M.V.; Lewis, Z.V. On the Weierstrass-Mandelbrot fractal function. Proc. R. Soc. Lond. Ser. A 1980, 370, 459–484. [Google Scholar] [CrossRef]
- Guido, R.C.; Addison, P.; Walker, J. Introducing wavelets and time-frequency analysis. IEEE Eng. Biol. Med. Mag. 2009, 28, 13. [Google Scholar] [CrossRef] [PubMed]
- Guariglia, E. Harmonic Sierpinski Gasket and Applications. Entropy 2018, 20, 714. [Google Scholar] [CrossRef]
- Zhang, W.P.; Chen, L. On the Catalan numbers and some of their identities. Symmetry 2019, 11, 62. [Google Scholar] [CrossRef]
−2 | 1 | ||||||
12 | −12 | 1 | |||||
−120 | 180 | −30 | 1 | ||||
1680 | −3360 | 840 | −56 | 1 | |||
−30,240 | 75,600 | −25,200 | 2520 | −90 | 1 | ||
665,280 | −1,995,840 | 831,600 | −110,880 | 5940 | −132 | 1 |
0 | 1 | ||||||
0 | −6 | 1 | |||||
0 | 60 | −20 | 1 | ||||
0 | −840 | 420 | −42 | 1 | |||
0 | 15,120 | −10,080 | 1512 | −72 | 1 | ||
0 | −332640 | 277,200 | −55,440 | 3960 | −110 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chen, Z. A Note on the Sequence Related to Catalan Numbers. Symmetry 2019, 11, 371. https://doi.org/10.3390/sym11030371
Zhang J, Chen Z. A Note on the Sequence Related to Catalan Numbers. Symmetry. 2019; 11(3):371. https://doi.org/10.3390/sym11030371
Chicago/Turabian StyleZhang, Jin, and Zhuoyu Chen. 2019. "A Note on the Sequence Related to Catalan Numbers" Symmetry 11, no. 3: 371. https://doi.org/10.3390/sym11030371