Relativistic Neutron Stars: Rheological Type Extensions of the Equations of State
Abstract
:1. Introduction
2. Prologue: On the Rheological Type Extension of Time Dependent Constitutive Equations
2.1. Classical Constitutive Equations in Rheology
2.2. Generalization of the Time Dependent EoS with Parametric Representation
3. The Formalism of the EoS Extension in the Framework of Static Models
3.1. The Standard Elements of the Model: Metric, Einstein Equations, and the Equation of Hydrostatic Equilibrium
3.2. Extended Equations of State for the Static Configurations
3.2.1. Convective and Directional Derivatives
3.2.2. Static Analogs of the Rheologically Extended Constitutive Equations
4. The Model of Cold Isotropic Neutron Condensate
4.1. Extended Equation of Hydrostatic Equilibrium: The General Relativistic Model
4.2. Rheological Type Generalization of the Non-Relativistic Lane–Emden Equation
4.2.1. Behavior of the Function near the Center
4.2.2. Behavior of the Pressure
4.2.3. The Mass/Radius Ratio
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lyne, A.; Graham-Smith, F. Pulsar Astronomy; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Becker, W. Neutron Stars and Pulsars; Springer Science and Business Media: Berlin, Germany, 2009. [Google Scholar]
- Compact Stars: Nuclear Physics, Particle Physics and General Relativity; Springer Science and Business Media: Berlin, Germany, 2012.
- Sahakian, G.S. Physics of Neutron Stars; JINR: Dubna, Russia, 1995. (In Russian) [Google Scholar]
- Weinberg, S. Gravitation and Cosmology; Wiley and Sons: New York, NY, USA, 1972. [Google Scholar]
- Sahakian, G.S. Equilibrium Configurations of Degenerate Gaseous Masses; Israel Program for Scientific Translations, Jerusalem; Halsted (Wiley): New York, NY, USA, 1974. [Google Scholar]
- Grigoryan, L.S.; Sahakian, G.S. Theory of superdense matter and degenerate stellar configurations. Astrophys. Space Sci. 1983, 95, 305–356. [Google Scholar] [CrossRef]
- Sahu, P.K. Nuclear equation of state at high density and the properties of neutron stars. Phys. Rev. C 2000, 62, 045801. [Google Scholar] [CrossRef]
- Baldo, M.; Burgio, F. Microscopic Theory of the Nuclear Equation of State and Neutron Star Structure. Lect. Notes Phys. 2001, 578, 1–29. [Google Scholar]
- Shen, H. Complete relativistic equation of state for neutron stars. Phys. Rev. C 2002, 65, 035802. [Google Scholar] [CrossRef]
- Haensel, P.; Potekhin, A.Y. Analytical representations of unified equations of state of neutron-star matter. Astron. Astrophys. 2004, 428, 191–197. [Google Scholar] [CrossRef]
- Ryu, C.Y.; Hyun, C.H.; Hong, S.W.; Kim, B.T. Kaon condensation and composition of neutron star matter in modified quark-meson coupling model. Phys. Rev. 2007, 75, 055804. [Google Scholar] [CrossRef]
- Haensel, P.; Potekhin, A.Y.; Yakovlev, D.G. Neutron Stars 1: Equation of State and Structure; Springer Science and Business Media: Berlin, Germany, 2007. [Google Scholar]
- Lattimer, J.M.; Prakash, M. Neutron Star Observations: Prognosis for Equation of State Constraints. Phys. Rept. 2007, 442, 109–165. [Google Scholar] [CrossRef]
- Blaschke, D.; Berdermann, J.; Lastowiecki, R. Hybrid neutron stars based on a modified PNJL model. Prog. Theor. Phys. Suppl. 2010, 186, 81–86. [Google Scholar] [CrossRef]
- Niu, Z.-M.; Gao, C.-Y. δ-meson effects on neutron stars in the modified quark-meson coupling model. Int. J. Mod. Phys. E 2010, 19, 2247–2263. [Google Scholar] [CrossRef]
- Miyatsu, T.; Cheoun, M.-K.; Saito, K. Equation of state for neutron stars in SU(3) flavor symmetry. Phys. Rev. C 2013, 88, 015802. [Google Scholar] [CrossRef]
- Nättilä, J.; Steiner, A.W.; Kajava, J.J.E.; Suleimanov, V.F.; Poutanen, J. Equation of state constraints for the cold dense matter inside neutron stars using the cooling tail method. Astron. Astrophys. 2016, 591, A25. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Prakash, M. The equation of state of hot, dense matter and neutron stars. Phys. Rep. 2016, 621, 127–164. [Google Scholar] [CrossRef]
- Lindblom, L. Causal representations of neutron-star equations of state. Phys. Rev. D 2018, 97, 123019. [Google Scholar] [CrossRef]
- Degenaar, N.; Suleimanov, V.F. Testing the equation of state of neutron stars with electromagnetic observations. arXiv, 2018; arXiv:1806.02833. [Google Scholar]
- Eling, C.; Jacobson, T.; Miller, M.C. Neutron stars in Einstein–aether theory. Phys. Rev. D 2009, 76, 042003. [Google Scholar] [CrossRef]
- Cooney, A.; DeDeo, S.; Psaltis, D. Neutron Stars in f(R) Gravity with Perturbative Constraints. Phys. Rev. D 2010, 82, 064033. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D. Maximal neutron star mass and the resolution of hyperon puzzle in modified gravity. Phys. Rev. D 2014, 89, 103509. [Google Scholar] [CrossRef]
- Cisterna, A.; Delsate, T.; Rinaldi, M. Neutron stars in general second order scalar-tensor theory: The case of non-minimal derivative coupling. Phys. Rev. D 2015, 92, 044050. [Google Scholar] [CrossRef]
- Doneva, D.D.; Yazadjiev, S.S.; Kokkotas, K.D. The I-Q relations for rapidly rotating neutron stars in f(R) gravity. Phys. Rev. D 2015, 92, 064015. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M.; Farinelli, R.; Odintsov, S.D. The Mass-Radius relation for Neutron Stars in f(R) gravity. Phys. Rev. D 2016, 93, 023501. [Google Scholar] [CrossRef]
- Resco, M.A.; de la Cruz-Dombriz, A.; Llanes-Estrada, F.J.; Castrillo, V.Z. On neutron stars in f(R) theories: Small radii, large masses and large energy emitted in a merger. Phys. Dark Universe 2016, 13, 147–161. [Google Scholar] [CrossRef]
- Hendi, S.H.; Bordbar, G.H.; Eslam Panah, B.; Panahiyan, S. Modified TOV in gravity’s rainbow: Properties of neutron stars and dynamical stability conditions. J. Cosmol. Astropart. Phys. 2016, 09, 013. [Google Scholar] [CrossRef]
- Brax, P.; Davis, A.-C.; Jha, R. Neutron Stars in Screened Modified Gravity: Chameleon vs Dilaton. Phys. Rev. D 2017, 95, 083514. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. APJ Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Day, W.A. The Thermodynamics of Simple Materials with Fading Memory; Springer Tracts in Natural Philosophy; Springer: Berlin/Heidelberg, Germany, 1972; Volume 22. [Google Scholar]
- Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Reiner, M. Advanced Rheology; H.K. Lewis and Co., Ltd.: London, UK, 1971. [Google Scholar]
- Rabotnov, Y.N. Elements of Hereditary Solid Mechanics; Mir Publishers: Moscow, Russia, 1980. [Google Scholar]
- Maxwell, J.C. On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 1867, 157, 49–88. [Google Scholar]
- Jou, D.; Casas-Vázquez, J.; Lebon, G. Extended Irreversible Thermodynamics; Springer: Berlin, Germany, 1996. [Google Scholar]
- Maugin, G.A. The Thermomechanics of Nonlinear Irreversible Behaviors. An Introduction; World Scientific: Singapore, 1999. [Google Scholar]
- Israel, W.; Stewart, J.M. Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 1979, 118, 341–372. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. The new form of the equation of state for dark energy fluid and accelerating universe. Phys. Lett. B 2006, 639, 144–150. [Google Scholar] [CrossRef]
- Balakin, A.B.; Bochkarev, V.V. Archimedean-type force in a cosmic dark fluid. I. Exact solutions for the late-time accelerated expansion. Phys. Rev. D 2011, 83, 024035. [Google Scholar] [CrossRef]
- Balakin, A.B.; Bochkarev, V.V. Archimedean-type force in a cosmic dark fluid. II. Qualitative and numerical study of a multistage universe expansion. Phys. Rev. D 2011, 83, 024036. [Google Scholar] [CrossRef]
- Balakin, A.B.; Bochkarev, V.V. Archimedean-type force in a cosmic dark fluid. III. Big Rip, Little Rip and Cyclic solutions. Phys. Rev. D 2013, 87, 024006. [Google Scholar] [CrossRef]
- Oppenheimer, J.R.; Volkoff, G.M. On massive neutron cores. Phys. Rev. 1939, 55, 374. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balakin, A.; Ilin, A.; Kotanjyan, A.; Grigoryan, L. Relativistic Neutron Stars: Rheological Type Extensions of the Equations of State. Symmetry 2019, 11, 189. https://doi.org/10.3390/sym11020189
Balakin A, Ilin A, Kotanjyan A, Grigoryan L. Relativistic Neutron Stars: Rheological Type Extensions of the Equations of State. Symmetry. 2019; 11(2):189. https://doi.org/10.3390/sym11020189
Chicago/Turabian StyleBalakin, Alexander, Alexei Ilin, Anna Kotanjyan, and Levon Grigoryan. 2019. "Relativistic Neutron Stars: Rheological Type Extensions of the Equations of State" Symmetry 11, no. 2: 189. https://doi.org/10.3390/sym11020189