# Noether-Like Operators and First Integrals for Generalized Systems of Lane-Emden Equations

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries on Noether-Like Operators and First Integrals

## 3. Noether-Like Operators and First Integrals for Different Forms of ${F}_{1}$ and ${F}_{2}$ in (4)

## 4. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- E Noether, I.V. Koönigliche Gesellschaft der Wissenschaften zu Göttingen. Math. Phys.
**1918**, 2, 235–269. [Google Scholar] - Ali, S.; Mahomed, F.M.; Qadir, A. Complex Lie symmetries for scalar second-order ordinary differential equations. Nonlinear Anal. Real World Appl.
**2009**, 10, 3335–3344. [Google Scholar] [CrossRef] - Ali, S.; Mahomed, F.M.; Qadir, A. Complex Lie symmetries for variational problems. J. Nonlinear. Math. Phys.
**2008**, 15, 25–35. [Google Scholar] [CrossRef] - Farooq, M.U.; Ali, S.; Mahomed, F.M. Two dimensional systems that arise from the Noether classification of Lagrangian on the line. Appl. Math. Comput.
**2011**, 217, 6959–6973. [Google Scholar] [CrossRef] - Farooq, M.U.; Ali, S.; Qadir, A. Invariants of two-dimensional systems via complex Lagrangians with applications. Commun. Nonlinear Sci. Num. Simul.
**2011**, 16, 1804–1810. [Google Scholar] [CrossRef] - Ali, S.; Mahomed, F.M.; Qadir, A. Linearizability criteria for systems of two second-order differential equations by complex methods. Nonlinear Dyn.
**2011**, 66, 77–88. [Google Scholar] [CrossRef] [Green Version] - Ali, S.; Safdar, M.; Qadir, A. Linearization from complex Lie point Transformations. J. Appl. Math.
**2014**, 2014, 793247. [Google Scholar] [CrossRef] - Mahomed, F.M.; Qadir, A.; Ramnarain, A. Laplace-Type Semi-Invariants for a System of Two Linear Hyperbolic Equations by Complex Methods. Math. Prob. Eng.
**2011**, 2011, 202973. [Google Scholar] [CrossRef] - Qadir, A.; Mahomed, F.M. Higher dimensional systems of differential equations obtainable by iterative use of complex methods. Int. J. Mod. Phys.
**2015**, 38, 1560077. [Google Scholar] [CrossRef] [Green Version] - Naz, R.; Mahomed, F.M. Lie and Noether symmetries of systems of complex ordinary differential equations and their split systems. Pramana J. Phys.
**2014**, 83, 920. [Google Scholar] [CrossRef] - Naz, R.; Mahomed, F.M. A complex Noether approach for variational partial differential equations. Commun. Nonlinear Sci. Numer. Simul.
**2015**, 27, 120–135. [Google Scholar] [CrossRef] - Soh, C.W.; Mahomed, F.M. Hypercomplex analysis and integration of systems of ordinary differential equations. Math. Meth. Appl. Sci.
**2016**. [Google Scholar] [CrossRef] - Wong, J.S. On the generalized Emden–Fowler equation. SIAM Rev.
**1975**, 17, 339–360. [Google Scholar] [CrossRef] - Chandrasekhar, S. An Introduction to the Study of Stellar Structure; Dover: New York, NY, USA, 1957. [Google Scholar]
- Davis, H.T. Introduction to Nonlinear Differential and Integral Equations; Dover: New York, NY, USA, 1962. [Google Scholar]
- Richardson, O.W. The Emission of Electricity from Hot Bodies, 2nd ed.; Longmans, Green & Co.: London, UK, 1921. [Google Scholar]
- Dehghan, M.; Shakeri, F. Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron.
**2008**, 13, 53–59. [Google Scholar] [CrossRef] - Ramos, J.I. Series approach to the Lane–Emden equation and comparison with the homotopy perturbation method. Chaos Solitons Fractals
**2008**, 38, 400–408. [Google Scholar] [CrossRef] - Marzban, H.R.; Tabrizidooz, H.R.; Razzaghi, M. Hybrid functions for nonlinear initial-value problems with applications to Lane–Emden type equations. Phys. Lett. A
**2008**, 372, 5883–5886. [Google Scholar] [CrossRef] - Ertrk, V.S. Differential transformation method for solving differential equations of Lane–Emden type. Math. Comput. Appl.
**2007**, 12, 135–139. [Google Scholar] [CrossRef] - Serrin, J.; Zou, H. Non-existence of positive solutions of Lane–Emden systems. Differ. Int. Equ.
**1996**, 9, 635653. [Google Scholar] - Serrin, J.; Zou, H. Existence of positive solutions of the Lane–Emden system. Atti del Seminario Matematico e Fisico Dell Universita di Modena
**1998**, 46, 369–380. [Google Scholar] - Qi, Y.W. The existence of ground states to a weakly coupled elliptic system. Nonlinear Anal. Theory Methods Appl.
**2002**, 48, 905–925. [Google Scholar] [CrossRef] - Dalmasso, R. Existence and uniqueness of solutions for a semilinear elliptic system. Int. J. Math. Math. Sci.
**2005**, 10, 1507–1523. [Google Scholar] [CrossRef] - Muatjetjeja, B.; Khalique, C.M. Exact solutions of the generalized Lane–Emden equations of the first and second kind. Pramana J. Phys.
**2011**, 77, 545–554. [Google Scholar] [CrossRef] - Khalique, C.M.; Mahomed, F.M.; Muatjetjeja, B. Lagrangian formulation of a generalized Lane–Emden equation and double reduction. J. Nonlinear Math. Phys.
**2008**, 15, 152–161. [Google Scholar] [CrossRef] - Muatjetjeja, B.; Khalique, C.M. Lagrangian approach to a generalized coupled Lane–Emden system: Symmetries and first integrals. Commun. Nonlinear Sci. Numer. Simul.
**2010**, 15, 1166–1171. [Google Scholar] [CrossRef] - Muatjetjeja, B.; Khalique, C.M. First integrals for a generalized coupled Lane–Emden system. Nonlinear Anal. Real World Appl.
**2011**, 12, 1202–1212. [Google Scholar] [CrossRef] - Dai, Q.; Tisdell, C.C. Non-degeneracy of positive solutions to homogeneous second order differential systems and its applications. Acta Math. Sci.
**2009**, 29, 437–448. [Google Scholar] - Zou, H. A prior estimates for a semilinear elliptic system without variational structure and their application. Math. Ann.
**2002**, 323, 713–735. [Google Scholar] [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Farooq, M.U.
Noether-Like Operators and First Integrals for Generalized Systems of Lane-Emden Equations. *Symmetry* **2019**, *11*, 162.
https://doi.org/10.3390/sym11020162

**AMA Style**

Farooq MU.
Noether-Like Operators and First Integrals for Generalized Systems of Lane-Emden Equations. *Symmetry*. 2019; 11(2):162.
https://doi.org/10.3390/sym11020162

**Chicago/Turabian Style**

Farooq, M. Umar.
2019. "Noether-Like Operators and First Integrals for Generalized Systems of Lane-Emden Equations" *Symmetry* 11, no. 2: 162.
https://doi.org/10.3390/sym11020162