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Abstract: Coupled systems of Lane–Emden equations are of considerable interest as they model
several physical phenomena, for instance population evolution, pattern formation, and chemical
reactions. Assuming a complex variational structure, we classify the generalized system of
Lane–Emden type equations in relation to Noether-like operators and associated first integrals.
Various forms of functions appearing in the considered system are taken, and it is observed that the
Noether-like operators form an Abelian algebra for the corresponding Euler–Lagrange-type systems.
Interestingly, we find that in many cases, the Noether-like operators satisfy the classical Noether
symmetry condition and become the Noether symmetries. Moreover, we observe that the classical
Noetherian integrals and the first integrals we determine using the complex Lagrangian approach
turn out to be the same for the underlying system of Lane–Emden equations.
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1. Introduction

The famous Noether theorem [1] establishes an important connection between the conservation
laws and symmetry properties of a system describable by a Lagrangian. From a mathematical point of
view, it is the case that the essential physical explanation of a Euler–Lagrange system is hidden in its
Lagrangian. The Lagrangian function, on the one hand, describes the time behavior of a mechanical
system through the Euler–Lagrange equation, and on the other hand, it connects symmetries with first
integrals of motion if they arise through Noether’s theorem. The availability of a Noether symmetry is
essential from two aspects: first, to determine conservation laws and, second, to reduce the underlying
equation. A significant number of studies on Noether symmetries and first integrals have been reported
in recent years. It is well known that if an equation possesses enough conserved quantities, it can be
easily reduced to an integrable form.

In recent papers, the authors of [2,3] introduced the complex symmetry approach, which has
been established as an appealing and elegant technique to study integrability properties of systems of
ordinary differential equations (ODEs). Following the idea of [3–5], several studies have been done to
view integrability properties of systems of partial differential equations (PDEs) and ODEs. For instance,
the use of the complex variable technique to discuss linearization of systems of two second-order
ODEs and PDEs has been presented in [6]. The procedure of converting a system of two second-order
ODEs admitting Lie algebra of dimension d (d ≤ 4) into linearizable form with the help of complex
Lie point symmetries of the base equation was given in [7]. Using semi-invariants, Mahomed et al. [8]
studied systems of two linear hyperbolic PDEs when they arise from a complex scalar ODE. They
found that the semi-invariants under linear transformations correspond to complex semi-invariants of
the (1 + 1) linear hyperbolic equation in the complex domain. They also succeeded in linking these
hyperbolic equations by introducing a complex variable structure on the manifold to the geometry of
underlying differential equations. Qadir and Mahomed [9] employed the complex variable technique
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to study three- and four-dimensional systems of ODEs and PDEs that are transformable to a single
complex ODEs. They showed that the acquired systems of ODEs are entirely different from the class
that is obtained from single splitting of systems of two ODEs. Naz and Mahomed [10,11] presented a
detailed analysis of the computation of Lie and Noether point symmetries of the kth-order system of n
ODEs by working in the complex domain. They also discussed the transonic gas flow, Maxwellian
distribution, Klein–Gordon equation, dissipative wave, and Maxwellian tails by introducing complex
variables. Wafo Soh and Mahomed [12] showed that by utilizing hypercomplexification, one can
linearize Ermakov systems. Transforming systems of some Riccati-type equations to a single base
equation, they constructed invariants of Able-type systems.

In the current study, we use the formulation of the Noether-like theorem presented in [3–5]
and classify systems of Lane–Emden equations with respect to Noether-like operators they admit
and related first integrals. On applying the complex symmetry approach, we see that additional
insights are obtainable by utilizing the fact that a complex Lagrangian encodes information of two real
Lagrangians, and it is derivable from a variational principle. As a consequence of the present study,
many important symmetry properties can easily be analyzed using complex Lagrangians, and these
help us to determine the invariant quantities of physically-coupled systems represented by ODEs.

The celebrated Lane–Emden (LE) equation given below is the simplest second-order ODE,
which appears frequently in modeling one-dimensional problems in physics, astrophysics,
and engineering, and it is still a subject of extensive analysis. A review by Wang [13], even though very
selective in its list of references, covered almost all possible generalizations and qualitative properties
of the LE equation.

Consider the well-known second-order LE equation:

y′′ +
n
t

y′ + f (y) = 0, (1)

where n is a real number and f (y) an arbitrary continuous function of y. The LE equation (1) has many
physical applications. For instance, for fixed values of n and f (y), it specifically models the thermal
behavior of a spherical cloud of gas, stellar structure, an isothermal gaseous sphere, and the theory
of thermionic currents [14–16]. In the literature, various techniques have been proposed concerning
the solutions of Equation (1); see for example [17–20]. Several authors have proven existence and
uniqueness results for the LE systems [21–24] (see also the references in these papers) and other related
systems. Some other works that involve Noether symmetries and exact solutions of LE-type equations
can be found in [25]. Moreover, the Noether symmetries of Equation (1) and exact solutions by taking
various forms of f (y) were investigated in [26].

Before going to the main discussion, it is important to recall studies in view of the Noether
symmetry classification of coupled systems of LE equations. Recently, the authors of [27] took a system
of LE equations given by a natural extension of (1), classified it with respect to Noether symmetries,
and constructed first integrals of:

f ′′ +
n
x

f ′ + F1(g) = 0, g′′ +
n
x

g′ + F2( f ) = 0, (2)

where n is a real number constant and F1(g) and F2( f ) are arbitrary functions. From a Noether
symmetry, Muatjetjeja and Khalique [28], extended their own work and studied the classification of
another system of LE equations given by:

f ′′ +
n
x

f ′ + h(x)gq = 0, g′′ +
n
x

g′ + h(x) f p = 0, (3)

with respect to Noether symmetries and their first integrals. In this paper, we shall make a kind of
comparison of how the complex Lagrangian formulation and the classical Noether symmetry approach
generate the same first integrals for the following general class of the LE system:
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f ′′ +
n1

x
f ′ − n2

x
g′ + F1( f , g) = 0, g′′ +

n2

x
f ′ +

n1

x
g′ + F2( f , g) = 0. (4)

The famous LE system (4) has been used in modeling various physical problems such as pattern
recognition, chemical reactions, and population evolution, to name a few. This system attracted the
attention of many authors and has been an area of extensive research during the last couple of years
(see [21–24,29,30] and the references therein).

We shall consider various forms of F1 and F2 to construct conserved quantities of the ensuing
systems and show that reduction via quadrature can be obtained only in a few cases. We point
out that the Noether-like operators we find for systems of Euler–Lagrange LE equations also satisfy
the classical Noether symmetry condition for one of the known equivalent Lagrangians, emerge
as Noether symmetries, and hence yield Noetherian first integrals for the subsequent systems.
Thus, the Noetherian first integrals and the first integrals we obtain employing a complex Lagrangian
approach turn out to be the same with respect to the Lagrangians for the underlying systems of ODEs.
We shall see that many interesting insights can be obtained for systems of ODEs through the complex
symmetry approach.

The layout of the paper is the following: in the next section, we briefly recall some basic definitions
of Noether-like operators and the Noether-like theorem. Section 3 deals with the classification of
Noether-like operators and associated first integrals for the system (4). In the last section, we present
our concluding remarks.

2. Preliminaries on Noether-Like Operators and First Integrals

Before we consider the generalized system of LE equations in relation to their Noether-like
operators and corresponding first integrals, it is instructive to have relevant definitions of these
operators and the Noether-like theorem that will be used in our discussion. Moreover, to make
the comparison, we also recall expressions for classical Noether symmetries and Noether’s theorem.
The contents of this section are taken from [3,4] (for more details, the reader is urged to see the
references therein).

Consider the following system of nonlinear second-order ODEs:

f ′′i = wi(x, f1, f ′1, f2, f ′2), i = 1, 2. (5)

Equation (5) represents a general class of a system of second-order ODEs and models various
physical problems. However, here, we merely deal with those systems in (5) that are equivalent
to a single scalar complex ODE, i.e., there exist transformations f = f1 + i f2, w = w1 + iw2 that
reduce the system (5) to a complex ODE, f ′′ = w(x, f , f ′), which retain a variational structure. It is
generally conceded that the construction of a Lagrangian for systems of nonlinear ODEs has been
proven to be a complicated problem. However, we see here how one can study symmetry properties
of Euler–Lagrange-type LE equations straightforwardly with the help of a complex Lagrangian, which
encodes two real Lagrangians and enables us to cast the system (5) in a variational form.

Here, our aim is to determine the Noether-like operators and related first integrals of a coupled
system of two LE equations. We start by assuming that the system (5) admits a complex Lagrangian
L(x, f , f ′), i.e. L = L1 + iL2. Therefore, we have two Lagrangians L1 and L2, which when utilized
result in the following Euler–Lagrange-type system corresponding to (5):

∂L1

∂ f1
+

∂L2

∂ f2
− d

dx
(

∂L1

∂ f ′1
+

∂L2

∂ f ′2
) = 0,

∂L2

∂ f1
− ∂L1

∂ f2
− d

dx
(

∂L2

∂ f ′1
− ∂L1

∂ f ′2
) = 0.

(6)
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The operators X1 = ς1(x, f1, f2)
∂

∂x + χ1(x, f1, f2)
∂

∂ f1
+ χ2(x, f1, f2)

∂
∂ f2

and X2 = ς2(x, f1, f2)
∂

∂x +

χ2(x, f1, f2)
∂

∂ f1
− χ1(x, f1, f2)

∂
∂ f2

are known as Noether-like operators of (5) for the Lagrangians L1 and
L2 if the following conditions hold:

X(1)
1 L1 − X(1)

2 L2 + (Dxς1)L1 − (Dxς2)L2 = Dx A1,

X(1)
1 L2 − X(1)

2 L1 + (Dxς1)L2 + (Dxς2)L1 = Dx A2,
(7)

for appropriate functions A1 and A2. Here, Dx = d
dx .

Noether-like theorem:
If X1 and X2 are two Noether-like operators with respect to real Lagrangians L1 and L2, then (5)

possesses the following two first integrals:

I1 = ς1L1 − ς2L2 +
∂L1

∂ f ′1
(χ1 − f ′1ς1 − f ′2ς2)−

∂L2

∂ f ′1
(χ2 − f ′1ς2 − f ′2ς1)− A1,

I2 = ς1L2 + ς2L1 +
∂L2

∂ f ′1
(χ1 − f ′1ς1 − f ′2ς2) +

∂L1

∂ f ′1
(χ2 − f ′1ς2 − f ′2ς1)− A2.

(8)

Classical Noether symmetry condition:
A vector field X = ς(x, f1, f2)

∂
∂x + χ(x, f1, f2)

∂
∂ f1

+ η(x, f1, f2)
∂

∂ f2
with its prolongation

X[1] = X + (χ̇− ḟ1ς̇) ∂
∂ ḟ1

+ (η̇ − ḟ2ς̇) ∂
∂ ḟ2

where ‘·′ = d
dx is known as a Noether point symmetry

corresponding to the function L(x, f1, f2, f ′1, f ′2) of (5) if the following equation holds:

X[1](L) + Dx(ς)L = Dx(A) (9)

Noether’s theorem:
For X to be a Noether symmetry generator for the Lagrangian L(x, f1, f2, f ′1, f ′2), the

following equation:

I = A−
[
ςL + (χ− ς ḟ1)

∂L
∂ ḟ1

+ (η − ς ḟ2)
∂L
∂ ḟ2

]
, (10)

provides the Noetherian first integral of (5) related to X.

3. Noether-Like Operators and First Integrals for Different forms of F1 and F2 in (4)

Major computational difficulties occur when trying to classify the general nonlinear LE equation
with respect to Noether symmetry operators and corresponding first integrals. We see here how the
Noether-like operators play an important role in deriving conserved quantities for dynamical systems
and their reduction via quadrature.

Consider the following nonlinear system, which is a generalized coupled LE-type system:

f ′′1 +
n1 f ′1 − n2 f ′2

x
+ F1( f1, f2) = 0,

f ′′2 +
n1 f ′2 + n2 f ′1

x
+ F2( f1, f2) = 0,

(11)

for which we have analyzed eight cases separately. Here, n1, n2 are constants and F1, F2 are arbitrary
functions of f1 and f2, respectively. We take different forms of F1 and F2 in (11) and determine
Noether-like operators and conserved quantities for the subsequent systems. Therefore, for this,
we proceed as: one can readily verify that the pair of Lagrangians for the system (11) when invoking (6)
is given by:
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L1 =
1
2

xn1 [cosθ( f ′21 − f ′22 )− 2sinθ f ′1 f ′2]− xn1 [cosθ
∫
(F1d f1 − F2d f2)− sinθ

∫
(F2d f1 + F1d f2)],

L2 =
1
2

xn1 [2cosθ( f ′1 f ′2) + sinθ( f ′21 − f ′22 )]− xn1 [cosθ
∫
(F2d f1 + F1d f2) + sinθ

∫
(F1d f1 − F2d f2)],

(12)

where θ = n2 ln x.
Case 1. F1( f1, f2) and F2( f1, f2) are linear in f1 and f2, respectively.
In this case, we have a system of two linear ODEs. Using appropriate transformations, one can

reduce the system of linear equations to a system of free particle equations, viz. f ′′1 = 0, f ′′2 = 0,
which possesses nine Noether-like operators associated with the coupled Lagrangians (11), and they
give ten first integrals. This case is well known and can be found in detail in [4].

Case 2. For n1, n2 = 0 and F1( f1, f2), F2( f1, f2) arbitrary and non-linear, as given in Case 1.
Equations (7) and (12), after some straightforward calculations, show that ς1 = 1, ς2 = 0,

χ1 = χ2 = 0, and A1, A2 are constants. Therefore, we have a single Noether-like operator X = ∂
∂x .

Using the pair of Lagrangians (12) and Noether-like operator X in (8), we obtain the following two
first integrals:

I1 =
1
2
( f ′2 − g′2) +

∫
[F1d f − F2dg],

I2 = f ′g′ +
∫
[F1dg + F2d f ].

(13)

Interestingly, the Noether-like operator X is also a Noether symmetry for each of the Lagrangians (12),
and (10) generates the same first integrals as given in (13) for System (11).

Case 3. If:

F1( f1, f2) =
α

2
log( f 2

1 + f 2
2 ) + γ f1 + δ, α 6= 0,

F2( f1, f2) = α arctan(
f2

f1
) + γ f2, α 6= 0

(14)

and n1, n2 = 0 and δ = 0, we obtain ς1 = x, ς = 0, χ1 = χ2 = 0 with A1, A2 as constants. This falls
into Case 2.

Case 4. For:

F1( f1, f2) =
α

2
[ f1 log( f 2

1 + f 2
2 )− f2 arctan( f2/ f1)] + γ f1 + δ, α 6= 0,

F2( f1, f2) =
α

2
[ f1 arctan( f2/ f1) + f2 log( f 2

1 + f 2
2 )] + γ f2 + δ, α 6= 0.

(15)

If n1, n2 = 0, we obtain ς1 = x, ς2 = 0, χ1 = χ2 = 0, and A1 = A2 = k, k being a constant.
This also bring us back to Case 2.

Case 5. If F = αur, α 6= 0, r 6= 0, 1.
Here, we discuss the following three cases:
Case 5.1. For n1 = r+3

r−1 and n2 = 0, the Noether-like symmetry conditions (7) result
in ς1 = x, ς2 = 0, χ1 = 2

1−r f1, χ2 = 2
1−r f2, with A1, A2 as constants. Therefore, we get two

Noether-like operators:

X1 = x
∂

∂x
+

2
1− r

(
f1

∂

∂ f1
+ f2

∂

∂ f2

)
, X2 =

2
1− r

(
f2

∂

∂ f1
− f1

∂

∂ f2

)
. (16)
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Utilizing (16) with (12), Equation (8) gives rise to two first integrals:

I1 =
1
2

xn1+1( f ′21 − f ′22 )− α

r + 1
xn1+1( f 2

1 + f 2
2 )

r+1
2 cosθ +

2
1− r

xn1( f1 f ′1 − f2 f ′2)− xn1+1( f ′21 − f ′22 ),

I2 = xn1+1 f ′1 f ′2 −
α

r + 1
xn1+1( f 2

1 + f 2
2 )

r+1
2 sinθ +

2
1− r

xn1( f1 f ′2 + f ′1 f2)− 2xn1+1 f ′1 f ′2,
(17)

for (11). Here, θ = (r + 1) arctan( f2/ f1). Utilization of transformations f1 = w1x
ν+1
1−r and f2 = w2x

ν+1
1−r

converts the above system (17) into an integrable form as:∫ dw
±
√

4(1− r)−2w2 − 2α(1 + r)−1 f r+1 − C1
= lnxC2, (18)

where C1 and C2 are constants. Here, we can see that the Lie algebra of Noether-like operators is
Abelian, i.e., [X1, X2] = 0.

Case 5.2. If we set n1 = 2, n2 = 0, and r = 5, Equations (6) and (12) yield the famous
Emden–Fowler system [3] given by:

f ′′1 +
2
x

f ′1 + α( f 5
1 − 10 f 3

1 f 2
2 + 5 f1 f 4

2 ) = 0,

f ′′2 +
2
x

f ′2 + α( f 5
2 − 10 f 2

1 f 3
2 + 5 f 4

1 f2) = 0,
(19)

while the associated Lagrangians are:

L1 =
1
2

x2( f ′21 − f ′22 )− α

6
x2[ f 6

1 − 15 f 4
1 f 2

2 + 15 f 2
1 f 4

2 − f 6
2 ],

L1 = x2 f ′1 f ′2 −
α

3
x2[3 f 5

1 f2 − 10 f 3
1 f 3

2 + 3 f1 f 5
2 ].

(20)

It is easy to see that the Emden–Fowler system (19) admits the following two
Noether-like operators:

X1 = 2x
∂

∂x
− f1

∂

∂ f1
− f2

∂

∂ f2
, X2 = f

∂

∂ f2
− f2

∂

∂ f1
. (21)

Utilizing these operators in Equations (8) and (20), we obtain the following constant quantities:

I1 = x3( f ′21 − f ′22 ) + x2( f1 f ′1 − f2 f ′2) +
1
3

x3( f 6
1 + 15 f 2

1 f 4
2 − 15 f 4

1 f 2
2 − f 6

2 ),

I2 = x3 f ′1 f ′2 +
1
2

x2( f1 f ′2 + f ′1 f2) + x3( f1 f 5
2 −

10
3

f 3
1 f 3

2 + f 5
1 f2),

(22)

for (19). Upon checking, we see that for L1 and L2, the above system (19) admits X1 as a Noether
symmetry. Therefore, from the classical Noether theorem, we can deduce the first integrals I1 and I2

(Noetherian integrals) for (19).

Case 5.3. If n1 = r+3
r+1 with r 6= −1, we have ς1 = x

r−1
r+1 , ς2 = 0, χ1 = − 2

r+1 x
−2
r+1 f1,

χ2 = − 2
r+1 x

−2
r+1 f2, and A1 = 2

2(r+1)2 ( f 2
1 − f 2

2 ) + q, A2 = 4
(r+1)2 f1 f2, where q is constant. By invocation

of the Noether-like theorem, the Noether-like operators given in (24) provide:

I1 =
1
2

x2( f ′21 − f ′22 ) +
α

r + 1
x2( f 2

1 + f 2
2 )

r+1
2 cosθ +

2
r + 1

x( f1 f ′1 − f2 f ′2) +
2

(1 + r)2 ( f 2
1 − f 2

2 ),

I2 = x2 f ′1 f ′2 +
α

r + 1
x2( f 2

1 + f 2
2 )

r+1
2 sinθ +

2
r + 1

x( f1 f ′2 + f ′1 f2) +
4

(r + 1)2 f1 f2,
(23)
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where θ = (r + 1) arctan( f2/ f1). In this case, Noether-like operators are of the form:

X1 = x
r−1
r+1

∂

∂x
− 2

r + 1
x−

2
r+1

(
f1

∂

∂ f1
+ f2

∂

∂ f2

)
, X2 = − 2

r + 1
x−

2
r+1

(
f2

∂

∂ f1
− f1

∂

∂ f2

)
. (24)

Applying the transformations f1 = w1x
−ν−1
r+1 and f2 = w2x

−ν−1
r+1 , System (23) can be converted into

the variable separable form:∫ dw
±
√
−2α(r + 1)−1wr+1 + C1

=
r + 1

2
x

2
r+1 + C2, (25)

where C1 and C2 are arbitrary constants.
Case 6. If F1 and F2 are nonlinear and are of the form F1( f1, f2) = α( f 2

1 − f 2
2 )+ β f1 +γ, F2( f1, f2) =

2α f1 f2 + β f2, α, β, γ are constants, and α 6= 0.
Here, the following subcases arise:

Case 6.1. If n1 = 5 and n2 = 0, β = 0 and γ = 0, we obtain from (7) that ς1 = x, ς2 = 0,
χ1 = −2 f1, χ2 = −2 f2, and A1, A2 are constants. This case falls into Case 5.1.
Case 6.2. If n1 = 5, n2 = 0, β2 = 4αγ, Equations (7) and (12) yield ς1 = x, ς2 = 0, χ1 = −(2 f1 +
β
α ), χ2 = −2 f2, A1 = βγ

6α x6, and A2 = 0. Therefore, Noether-like operators are of the form:

X1 = x
∂

∂x
− (2 f1 +

β

α
)

∂

∂ f1
− 2 f2

∂

∂ f2
, X2 = (2 f1 +

β

α
)

∂

∂ f2
− 2 f2

∂

∂ f1
. (26)

Invocation of the Noether-like theorem (8) along with Lagrangians and Noether-like operators X1

and X2 results in two first integrals:

I1 =
1
2

x6( f ′21 − f ′22 ) +
1
3

αx6( f 3
1 − 3 f1 f 2

2 ) +
1
2

βx6( f 2
1 − f 2

2 ) + γx6 f + 2x5( f1 f ′1 − f2 f ′2) +
β

α
x5 f ′1

+
βγ

6α
x6

I2 = x6 f ′1 f ′2 +
1
3

αx6(3 f 2
1 f2 − f 3

2 ) + βx6 f1 f2 + γx6 f2 + 2x5( f1 f ′2 + f ′1 f2) +
β

α
x5 f ′2,

(27)

for (11). Using the transformations w1 = x1+ν f1 +
β

2α xν+1 and w1 = xν+1 f2, one can map the
system (27) to a separable form:

C = 2w2 − 1
2

x2w′2 − α

3
w3, (28)

where w(x) = w1 + iw2.
It can be verified that the Noether-like operator X1 in (26) is also a Noether symmetry for the

Lagrangians L1 and L2 in Equation (12). The classical Noether’s theorem generates the same Noetherian
first integrals I1 and I2 given in Equation (27) with Lagrangians L2 and L1, respectively, for the resulting
system of LE equations. Furthermore, we observe that [X1, X2] = 0, so these operators form an
Abelian algebra.

Case 6.3. For n1 = 5
3 , n2 = 0, β = 0, and γ = 0, Equation (7) taking L1 and L2 from (12) with simple

calculations gives ς1 = x
1
3 , χ1 = − 2

3 x
−2
3 f1, χ2 = − 2

3 x
−2
3 f2, and A1 = 2

9 ( f 2
1 − f 2

2 ) + k, A2 = 4
9 ( f1 f2),

and k is a constant. This case falls into Case 5.2.
Case 7. For F1( f1, f2) = αeβ f1 cos(β f2) + γ f1 + δ, F2( f1, f2) = αeβ f1 sin(β f2) + γ f2, where α, β, δ

are constants and α 6= 0, β 6= 0. Therefore, (11) takes the form:

f ′′1 +
n1 f ′1 − n2 f ′2

x
+ αexp(β f1)cos(β f2) + γ f1 + δ = 0,

f ′′2 +
n1 f ′2 + n2 f ′1

x
+ αexp(β f1)sin(β f2) + γ f2 = 0,

(29)
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For n1 = 1, n2 = 0, γ = 0, δ = 0, and β = 1, we obtain ς1 = x, ς2 = 0, χ1 = −2, χ2 = 0, and
A1, A2 = q, where q is a constant. Therefore, the system (29) possesses the Noether-like operators:

X1 = x
∂

∂x
− 2∂

∂ f1
, X2 =

∂

∂ f2
. (30)

with the corresponding pair of Lagrangians:

L1 =
1
2

x( f ′21 − f ′22 )− αxe f1 cos f2,

L2 = x f ′1 f ′2 − αxe f1 sin f2.
(31)

Utilizing the Noether-like operators and Lagrangians given above, Equation (8) implies the
first integrals:

I1 =
1
2

x2( f ′21 − f ′22 ) + αx2e f1 cos f2 + 2x f ′1

I2 = x2 f ′1 f ′2 + αx2e f1 sin f2 + 2x f ′2.
(32)

It is important to mention here that the system (29) admits Noether-like operator X1 as a Noether
symmetry [3], as it satisfies the classical Noether symmetry condition with Lagrangians L1 and L2 given
in (31). Therefore, application of the classical Noether theorem remarkably generates two Noetherian
first integrals, namely I1 and I2 given in (32). Here, again, the Lie bracket gives [X1, X2] = 0, which
shows that the algebra of these operators is Abelian.

Case 8. Here, n1, n2 are nonzero, and F1( f1, f2), F2( f1, f2) are arbitrary, but not of the form
contained in the cases given above.

From Equation (7), after simple manipulations, we find that ς1 = ς2 = 0, χ1 = χ2 = 0, and A1, A2

are constants. We deduce that no Noether-like operators exist in this case.

4. Conclusions

In this paper, we have applied the complex Noether approach and attempted to classify a
two-dimensional coupled system of LE equations that appears in physics and applied mathematics
with respect to Noether-like-operators and corresponding first integrals by taking the functions F1 and
F2 in their more general forms in Equation (11). In this study, we have observed that for some of the
systems of LE equations, every pair of Noether-like operators forms an Abelian Lie algebra. We have
also highlighted that for certain pairs of Lagrangians, the Noether-like operators become Noether
symmetries of the Euler–Lagrange systems of LE equations and give rise to the same Noetherian first
integrals as we determined from our complex approach. Therefore, the study of invariant quantities of
many dynamical systems can be made with the help of complex Lagrangian formalism, which seems
to be more simple and elegant.
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