Some New Observations and Results for Convex Contractions of Istratescu’s Type
Abstract
:1. Introduction
2. Preliminaries
- (1)
- if ;
- (2)
- ;
- (3)
- ,
- (a)
- is convergent to ς, if for each there is so that for all ;
- (b)
- is Cauchy if for every there is so that for all ;
- (c)
- is complete if every Cauchy sequence is convergent.
- (bM1) if and only if ,
- (bM2l) implies ,
- (bM2r) implies ,
- (bM3) .
- If (bM1), (bM2l) and (bM3) are verified, then is said to be an l-almost b-metric on Υ;
- If (bM1), (bM2r) and (bM3) are verified, then is said to be an r-almost b-metric on Υ;
- If (bM1), (bM2l), (bM2r) and (bM3) are verified, then is said to be an almost b-metric on Υ.
3. Main Results
3.1. Some Lemmas
3.2. On Convex Contractions of Order k in b-Metric Spaces
3.3. On Convex Reich Type Contractions of Order k in b-Metric Spaces
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak ϕ-contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337–346. [Google Scholar]
- Aydi, H.; Karapinar, E.; Bota, M.F.; Mitrović, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
- Istratescu, V.I. Some fixed point theorems for convex contraction mappings and convex non-expansive mapping. Libertas Mathematica 1981, 1, 151–163. [Google Scholar]
- Dolićanin, D.D.; Mohsin, B.B. Some new fixed point results for convex contractions in b-metric spaces. Univ. Thought Pub. Nat. Sci. 2019, 9, 67–71. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256. [Google Scholar] [CrossRef]
- Mitrović, Z.D. A note on the result of Suzuki, Miculescu and Mihail. J. Fixed Point Thery Appl. 2019, 21. [Google Scholar] [CrossRef]
- Mlaiki, N.; Kukić, K.; Gardašević-Filipović, M.; Aydi, H. On almost b-metric spaces and related fixed points results. Axioms 2019, 8, 70. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Karapinar, E.; O’Regan, D.; de Hierro, A.F.R.L. Fixed Point Theory in Metric Type Spaces; Springer International Publishing: Basel, Switzerland, 2015. [Google Scholar]
- Aydi, H.; Jellali, M.; Karapinar, E. On fixed point results for α-implicit contractions in quasi-metric spaces and consequences. Nonlinear Anal. Model. Control. 2016, 21, 40–56. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Alnafei, S.H.; Radenović, S.; Shahzad, N. Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces. Appl. Math. Lett. 2011, 24, 2162–2166. [Google Scholar]
- Alghamdi, M.A.; Alnafei, S.H.; Radenović, S.; Shahzad, N. Fixed point theorems for convex contraction mappings on cone metric spaces. Math. Comput. Model. 2011, 54, 2020–2026. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Aydi, H.; Alsamir, H. Fixed point results for multi-valued contractions in b-metric spaces and an application. Mathematics 2018, 7, 132. [Google Scholar] [CrossRef]
- Reich, S. Some remarks concerning contraction mappings. Canad. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
- Eke, K.S.; Olisama, V.O.; Bishop, S.A. Some fixed point theorems for convex contractive mappings in complete metric spaces with applications. Cogen Math. Stat. 2019, 6, 1655870. [Google Scholar] [CrossRef]
- Georgescu, F. IFSs consisting of generalized convex contractions. An. St. Univ. Ovidius Constanta 2017, 25, 77–86. [Google Scholar] [CrossRef]
- Istratescu, V.I. Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters-I. Annali Mat. Pura Appl. 1982, 130, 89–104. [Google Scholar] [CrossRef]
- Istratescu, V.I. Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters-II. Annali Mat. Pura Appl. 1983, 130, 327–362. [Google Scholar] [CrossRef]
- Latif, A.; Ninsri, A.; Sintunavarat, W. The α,β-generalized convex contractive condition with approximate fixed point results and some consequence. Fixed Point Theory Appl. 2016, 2016, 58. [Google Scholar] [CrossRef]
- Karapinar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [Google Scholar] [CrossRef]
- Miandaragh, M.A.; Postolache, M.; Rezapour, S. Aproximate fixed points of generalized convex contractions. Fixed Point Theory Appl. 2013, 2013, 255. [Google Scholar] [CrossRef]
- Ramezani, M. Orthogonal metric space and convex contractions. Int. J. Nonlinear Anal. Appl. 2015, 6, 127–132. [Google Scholar]
- Aydi, H.; Felhi, A.; Karapinar, E.; Sahmim, S. A Nadler-type fixed point theorem in dislocated spaces and applications. Miscolc Math. Notes 2018, 19, 111–124. [Google Scholar] [CrossRef]
- Singh, Y.M.; Khan, M.S.; Kang, S.M. F-convex contraction via admissible mapping and related fixed point theorems with an application. Mathematics 2018, 6, 105. [Google Scholar] [CrossRef]
- Bisht, R.K.; Rakočević, V. Fixed Points of Convex and Generalized Convex Contractions; Rendiconti del Circolo Matematico di Palermo Series 2; Springer: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Kirk, W.A.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer International Publishing Switzerland: Bazel, Switzerland, 2014. [Google Scholar]
- Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math. Appl. 2011, 62, 4222–4229. [Google Scholar] [CrossRef]
- Gu, F.; Shatanawi, W. Some new results on common coupled fixed points of two hybrid pairs of mappings in partial metric spaces. J. Nonlinear Funct. Anal. 2019, 13. [Google Scholar] [CrossRef]
- Tahat, N.; Aydi, H.; Karapinar, E.; Shatanawi, W. Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces. Fixed Point Theory Appl. 2012, 2012, 48. [Google Scholar] [CrossRef]
- Collaco, P.; Silva, E.J.C. A complete comparison of 25 contraction conditions. Nonlinear Anal. 1997, 30, 471–476. [Google Scholar] [CrossRef]
- Rhoades, B.E. Comparison of various definitions of comapison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
- Jntschi, L.; Balint, D.; Bolboacs, S.D. Multiple Linear Regressions by Maximizing the Likelihood under Assumption of Generalized Gauss-Laplace Distribution of the Error. Comput. Math. Methods Med. 2016, 2016, 8578156. [Google Scholar] [CrossRef]
- Mitrović, Z.D. An Extension of Fixed Point Theorem of Sehgal in b-Metric Spaces. Comm. Appl. Nonlinear Anal. 2018, 25, 54–61. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Well-posedness of fixed point problems. Far East J. Math. Sci. 2001, 41, 393–401. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. The set of noncontractive mappings is σ-porous in the space of all nonexpansive mappings. C. R. Acad. Sci. Paris 2001, 333, 539–544. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrović, Z.D.; Aydi, H.; Mlaiki, N.; Gardašević-Filipović, M.; Kukić, K.; Radenović, S.; de la Sen, M. Some New Observations and Results for Convex Contractions of Istratescu’s Type. Symmetry 2019, 11, 1457. https://doi.org/10.3390/sym11121457
Mitrović ZD, Aydi H, Mlaiki N, Gardašević-Filipović M, Kukić K, Radenović S, de la Sen M. Some New Observations and Results for Convex Contractions of Istratescu’s Type. Symmetry. 2019; 11(12):1457. https://doi.org/10.3390/sym11121457
Chicago/Turabian StyleMitrović, Z. D., H. Aydi, N. Mlaiki, M. Gardašević-Filipović, K. Kukić, S. Radenović, and M. de la Sen. 2019. "Some New Observations and Results for Convex Contractions of Istratescu’s Type" Symmetry 11, no. 12: 1457. https://doi.org/10.3390/sym11121457
APA StyleMitrović, Z. D., Aydi, H., Mlaiki, N., Gardašević-Filipović, M., Kukić, K., Radenović, S., & de la Sen, M. (2019). Some New Observations and Results for Convex Contractions of Istratescu’s Type. Symmetry, 11(12), 1457. https://doi.org/10.3390/sym11121457