Solving Directly Higher Order Ordinary Differential Equations by Using Variable Order Block Backward Differentiation Formulae
Abstract
:1. Introduction
2. Procedure on Developing Variable Order Block Backward Differentiation Formulae
- Firstly, we obtain Lagrange polynomials for order three, four and five VOHOBBDF by taking k = 5, 6 and 7.
- Finally, the resulting formulae for two new points for each order can be formulated into general formulations below:
- Order 3 VOHOBBDF
- Order 4 VOHOBBDF
- Order 5 VOHOBBDF
3. Implementation of VOHOBBDF
3.1. Performing Newton’s Iteration
3.2. Suitable Order Selection
4. Numerical Experiments and Discussion
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ME | Maximum error |
AE | Average error |
h | Step size |
ET(s) | Execution time in seconds |
References
- Suleiman, M.B.; Ibrahim, Z.B.; Rasedee, A.F.N.B. Solution of higher-order ODEs using backward difference method. Math. Probl. Eng. 2011, 2011, 810324. [Google Scholar] [CrossRef]
- Yap, L.K.; Ismail, F. Four point block hybrid collocation method for direct solution of third order ordinary differential equations. In Proceedings of the 25th National Symposium on Mathematical Sciences, Kuantan, Malaysia, 27–29 August 2017; AIP Publishing: Melville, NY, USA, 2018; pp. 1–9. [Google Scholar]
- Gear, C.W. The numerical integration of ordinary differential equations. In Mathematics of Computation; American Mathematical Society: Providence, RI, USA, 1967; pp. 21, 146–156. [Google Scholar]
- Hijazi, M.; Abdelrahim, R. The Numerical Computation of three step hybrid block method for directly solving third order ordinary differential equations. Glob. J. Pure Appl. Math. 2017, 13, 89–103. [Google Scholar]
- Adeyeye, O.; Omar, Z. New linear block method for third order ordinary differential Equations. J. Eng. Appl. Sci. 2018, 13, 4913. [Google Scholar]
- Hussain, K.A.; Ismail, F.; Senu, N.; Rabiei, F. Fourth-order improved Runge–Kutta method for directly solving special third-order ordinary differential equations. Iran. J. Sci. Technol. 2017, 41, 429–437. [Google Scholar] [CrossRef]
- Gear, C.W. The automatic integration of stiff ordinary differential equations. In Proceedings of IFIP Congress; North Holand Publishing Company: Amsterdam, The Netherlands, 1969; pp. 187–193. [Google Scholar]
- Sumithra, B. Numerical solution of stiff system by backward euler method. Appl. Math. Sci. 2015, 9, 3303–3311. [Google Scholar] [CrossRef]
- Abdi, A. Construction of high-order quadratically stable second-derivative general linear methods for the numerical integration of stiff ODEs. J. Comput. Appl. Math. 2016, 303, 218–228. [Google Scholar] [CrossRef]
- Chollom, J.P.; Kumleng, G.M.; Longwap, S. High order block implicit multi-step (HOBIM) methods for the solution of stiff ordinary differential equations. Int. J. Pure Appl. Math. 2014, 96, 483–505. [Google Scholar] [CrossRef]
- Ponalagusamy, R.; Ponnammal, K. A parallel fourth order rosenbrock method: Construction, analysis and numerical comparison. Int. J. Appl. Comput. Math. 2015, 1, 45–68. [Google Scholar] [CrossRef]
- Suleiman, M.B.; Musa, H.; Ismail, F.; Senu, N. A new variable step size block backward differentiation formula for solving stiff IVPs. Int. J. Comput. Math. 2013, 90, 2391–2408. [Google Scholar] [CrossRef]
- Zainuddin, N.; Ibrahim, Z.B.; Othman, K.I.; Suleiman, M.B. Direct fifth order block backward differentation formulas for solving second order ordinary differential equations. Chiang Mai J. Sci. 2016, 43, 1171–1181. [Google Scholar]
- Ibrahim, Z.B.; Mohd Nasir, N.A.A.; Othman, K.I.; Zainuddin, N. Adaptive order of block backward differentiation formulas for stiff ODEs. Numer. Algebr. Control Optim. 2017, 7, 95–106. [Google Scholar] [CrossRef]
- Asnor, A.I.; Yatim, S.A.M.; Ibrahim, Z.B. Algorithm of modified variable step block backward differentiation formulae for solving first order stiff ODEs. In Proceedings of the 25th National Symposium on Mathematical Sciences, Kuantan, Malaysia, 27–29 August 2017; AIP Publishing: Melville, NY, USA, 2018; pp. 1–11. [Google Scholar]
- Ibrahim, Z.B.; Noor, N.M.; Othman, K.I. Fixed coefficient a(α) stable block backward differentiation formulas for stiff ordinary differential equations. Symmetry 2019, 11, 846. [Google Scholar] [CrossRef]
Order | ||||||||
---|---|---|---|---|---|---|---|---|
3 | 0 | 0 | ||||||
4 | 0 | |||||||
5 |
Order | ||||||||
---|---|---|---|---|---|---|---|---|
3 | 0 | 0 | ||||||
4 | 0 | |||||||
5 |
h | Method | AE | ME | Total Steps | ET(s) |
---|---|---|---|---|---|
0.01 | VOHOBBDF | 9.52776 × | 1.69964 × | 100 | 0.000752 |
ode15s | 5.40856 | 6.37651 | 200 | 0.039062 | |
ode23s | 1.02200 | 5.75407 | 200 | 0.039062 | |
0.001 | VOHOBBDF | 2.13783 × | 3.40432 × | 1000 | 0.002652 |
ode15s | 7.73822 × | 9.16663 × | 2000 | 0.070312 | |
ode23s | 9.62600 × | 5.60735 × | 2000 | 0.054687 | |
0.0001 | VOHOBBDF | 2.21621 × | 3.52619 × | 10000 | 0.024842 |
ode15s | 7.75325 × | 8.14285 × | 20000 | 0.437500 | |
ode23s | 9.96859 × | 5.81096 × | 20000 | 0.296875 | |
0.00001 | VOHOBBDF | 1.32033 × | 1.74158 × 10−6 | 100000 | 0.249087 |
ode15s | 7.74728 × | 8.13635 × | 200000 | 10.507812 | |
ode23s | 9.57598 × | 5.57189 × | 200000 | 12.578125 |
h | Method | AE | ME | Total Steps | ET(s) |
---|---|---|---|---|---|
0.01 | VOHOBBDF | 5.76208 × | 3.12829 × | 100 | 0.000645 |
ode15s | 1.01716 × | 3.34008 × | 200 | 0.070312 | |
ode23s | 2.31030 × | 4.98225 × | 200 | 0.062500 | |
0.001 | VOHOBBDF | 8.29775 × | 4.48794 × | 1000 | 0.001214 |
ode15s | 1.01906 × | 3.40308 × | 2000 | 0.125000 | |
ode23s | 2.31138 × | 5.29203 × | 2000 | 0.085937 | |
0.0001 | VOHOBBDF | 8.47409 × | 4.62483 × | 10000 | 0.009719 |
ode15s | 7.21904 × | 4.00145 × | 20000 | 0.828125 | |
ode23s | 2.30210 × | 5.25468 × | 20000 | 0.516075 | |
0.00001 | VOHOBBDF | 9.96542 × | 3.55634 × | 100000 | 0.096912 |
ode15s | 7.52337 × | 3.75244 × | 200000 | 16.101562 | |
ode23s | 2.31828 × | 5.31723 × | 200000 | 21.226562 |
h | Method | AE | ME | Total Steps | ET(s) |
---|---|---|---|---|---|
0.01 | VOHOBBDF | 4.50236 × | 8.84316 × | 100 | 0.013748 |
ode15s | 1.04430 × | 1.32899 × | 200 | 0.093750 | |
ode23s | 1.57275 × | 1.06758 × | 200 | 0.187500 | |
0.001 | VOHOBBDF | 3.15549 × | 5.55627 × | 1000 | 0.010650 |
ode15s | 8.07396 × | 1.15260 × | 2000 | 0.179687 | |
ode23s | 1.55158 × | 1.05471 × | 2000 | 0.148437 | |
0.0001 | VOHOBBDF | 2.07591 × | 3.62885 × | 10000 | 0.071776 |
ode15s | 7.30058 × | 1.14937 × | 20000 | 0.921875 | |
ode23s | 1.57193 × | 1.06936 × | 20000 | 0.593750 | |
0.00001 | VOHOBBDF | 5.32785 × | 8.65595 × | 100000 | 0.112163 |
ode15s | 7.28808 × | 1.14840 × | 200000 | 33.320312 | |
ode23s | 1.54741 × | 1.05336 × | 200000 | 44.414062 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asnor, A.I.; Mohd Yatim, S.A.; Ibrahim, Z.B. Solving Directly Higher Order Ordinary Differential Equations by Using Variable Order Block Backward Differentiation Formulae. Symmetry 2019, 11, 1289. https://doi.org/10.3390/sym11101289
Asnor AI, Mohd Yatim SA, Ibrahim ZB. Solving Directly Higher Order Ordinary Differential Equations by Using Variable Order Block Backward Differentiation Formulae. Symmetry. 2019; 11(10):1289. https://doi.org/10.3390/sym11101289
Chicago/Turabian StyleAsnor, Asma Izzati, Siti Ainor Mohd Yatim, and Zarina Bibi Ibrahim. 2019. "Solving Directly Higher Order Ordinary Differential Equations by Using Variable Order Block Backward Differentiation Formulae" Symmetry 11, no. 10: 1289. https://doi.org/10.3390/sym11101289
APA StyleAsnor, A. I., Mohd Yatim, S. A., & Ibrahim, Z. B. (2019). Solving Directly Higher Order Ordinary Differential Equations by Using Variable Order Block Backward Differentiation Formulae. Symmetry, 11(10), 1289. https://doi.org/10.3390/sym11101289