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Abstract: Variable order block backward differentiation formulae (VOHOBBDF) method is employed
for treating numerically higher order Ordinary Differential Equations (ODEs). In this respect,
the purpose of this research is to treat initial value problem (IVP) of higher order stiff ODEs
directly. BBDF method is symmetrical to BDF method but it has the advantage of producing more
than one solutions simultaneously. Order three, four, and five of VOHOBBDF are developed and
implemented as a single code by applying adaptive order approach to enhance the computational
efficiency. This approach enables the selection of the least computed LTE among the three orders
of VOHOBBDF and switch the code to the method that produces the least LTE for the next step.
A few numerical experiments on the focused problem were performed to investigate the numerical
efficiency of implementing VOHOBBDF methods in a single code. The analysis of the experimental
results reveals the numerical efficiency of this approach as it yielded better performances with less
computational effort when compared with built-in stiff Matlab codes. The superior performances
demonstrated by the application of adaptive orders selection in a single code thus indicate its
reliability as a direct solver for higher order stiff ODEs.

Keywords: block backward differentiation formula; stiff ordinary differential equations; third order
ordinary differential equations; variable order

1. Introduction

Real world problems from various applications in science and engineering can often be modeled
into ordinary differential equations (ODEs). Some of the problems are modeled in the form of higher
order ODEs [1] in such a way that ODE will describe the behavior of the problems. The main focus of
this paper is on the linear third-order stiff initial value problems (IVPs). The linear third order ODEs is
categorized as higher order ODE. Define the third-order ODE with its initial conditions as

y′′′ = f (x, y, y′, y′′),

or rewrite it as

y′′′ = αy + βy′ + γy′′

equipped with initial conditions

y(a) = y0, y′(a) = y′0, y′′(a) = y′′0

(1)

where x ∈ [a, z], a is the starting point and z is the end point.
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Numerical approximations are introduced to solve problems that are impossible to find the actual
solution for. We found that a number of methods in the literature can provide approximate solutions
for higher order ODEs. Commonly, the higher order ODE is converted into its equivalent system of
first order before it is solved. Then, the first-order methods are used to find the approximate solutions.
However, this approach leads to complicated execution work and lengthy computation time [2]. It is
therefore significant to overcome this drawback by introducing a more efficient method that can solve
the higher order problems directly. For that reason, solving higher order problems directly eases the
execution work where the proof of direct solutions give advantages in speed and accuracy [3].

To date, the direct solutions that have been proposed to numerically approximate the third-order
ODEs include new hybrid block method [4], new linear block method [5] and four-point block hybrid
collocation method with two off-step points [2]. However, some of these methods are able to solve
non-stiff ODEs. Besides, fourth-order improved Runge–Kutta method is proposed for solving special
third-order ODEs [6].

Stiffness is one of the issues in ODE. Explicit methods, however, are not suitable to be applied
since small step sizes and a large number of integration steps are required. Thus, implicit methods
will take over the explicit methods to provide better performances. In the literature, we found that
various methods have been introduced for finding stiff solutions. The pioneering and most well-known
method, backward differentiation formula (BDF), was introduced by Gear [7]. In addition, backward
Euler method [8], second-derivative general linear methods (SGLMs) [9], high order block implicit
multistep [10] and new fourth-order, four-stage parallel Rosenbrock method (NPROS4) [11] have also
been proven to be reliable in solving stiffness.

Further innovation on BDF saw the block method being associated with BDF method, also known
as block backward differentiation formula (BBDF). The innovation is made at which BBDF is capable
to approximate several points instead of one point only at the same time. BBDF has shown its excellent
success as this method is capable of providing better approximations and reducing the computational
effort for solving the first- and second-order stiff ODE problems [12–16]. In this paper, we develop
constant step size of order three, four and five VOHOBBDF and fit the three methods in a single code
by applying an adaptive order approach. This approach can enhance the computational efficiency
for the direct approximations of the problem in Equation (1) such as minimize computational cost
as compared to the BBDF while maintaining its accuracy. Due to the advantages, VOHOBBDF can
produce more accurate results, manage to reduce the total number of steps and less time is needed to
compute the solutions.

This paper is organized as follows. The formulae for VOHOBBDF are developed based on
procedure stated in the second section followed by the detailed explanation on how to implement
three different orders of VOHOBBDF methods in a single code. Then, we compute the solutions of the
higher order ODEs by applying the proposed code to demonstrate its efficiency, which is followed
by a discussion on the performances. Lastly, the final part concludes the advantages of applying the
approach to VOHOBBDF methods for treating higher order ODEs.

2. Procedure on Developing Variable Order Block Backward Differentiation Formulae

VOHOBBDF methods consist of methods from order three up to order five with uniform step
size. In this section, VOHOBBDF is developed from Lagrange polynomial using MAPLE software for
which six, seven, and eight points are interpolated according to the order of VOHOBBDF. This method
numerically approximates the solutions at two new points whereby the development of the formulae
for each order goes through a similar procedure.

Thus, the procedure to develop the first and second points of the VOHOBBDF methods is briefly
explained in the following lines:
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1. Firstly, we obtain Lagrange polynomials for order three, four and five VOHOBBDF by taking
k = 5, 6 and 7.

P5(x) =
5

∑
j=0

Y · L5,j(x) (2)

P6(x) =
6

∑
j=0

Y · L6,j(x) (3)

P7(x) =
7

∑
j=0

Y · L7,j(x) (4)

where
x = s · h + xn+1,

Y = y(xn+2−j),

Lk,j(x) =
k

∏
i=0
i 6=j

(x− xn+2−i)

(xn+2−j)− (xn+2−i)
, k = 5, 6, 7

2. The development continues by differentiating Equations (2)–(4) with respect to s three times.
The first point may be obtained by substituting s with 0. Following the same procedure, we get
the second point by substituting s with 1.

3. Finally, the resulting formulae for two new points for each order can be formulated into general
formulations below:

• Order 3 VOHOBBDF

yn+1 =
4

∑
j=1

aj,1yn+j−4 + b2yn+2 + c1h3 fn+1

yn+2 =
4

∑
j=1

aj,2yn+j−4 + b1yn+1 + c2h3 fn+2

(5)

• Order 4 VOHOBBDF

yn+1 =
5

∑
j=1

aj,1yn+j−5 + b2yn+2 + c1h3 fn+1

yn+2 =
5

∑
j=1

aj,2yn+j−5 + b1yn+1 + c2h3 fn+2

(6)

• Order 5 VOHOBBDF

yn+1 =
6

∑
j=1

aj,1yn+j−6 + b2yn+2 + c1h3 fn+1

yn+2 =
6

∑
j=1

aj,2yn+j−6 + b1yn+1 + c2h3 fn+2

(7)

where yn+1 and yn+2 represent the approximated solutions for first and second point while
fn+1 and fn+2 represent the function for first and second point.
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According to these formulae, we can see that VOHOBBDF methods are implicit scheme.
Regarding this matter, predictor methods are needed to compute the functions of fn+1 and fn+2.

The coefficients for each order are listed in the following Tables 1 and 2 based on the formulae
yield in Equations (5)–(7).

Table 1. Coefficients for first point of VOHOBBDF.

Order b2 c1 a1,1 a2,1 a3,1 a4,1 a5,1 a6,1

3
71
17

4
17

7
17

−41
17

98
17

−118
17

0 0

4
232
49

8
49

−15
49

104
49

−307
49

496
49

− 461
49 0

5
5104
967

120
967

232
967

−1849
967

6432
967

−12,725
967

15,560
967

−11,787
967

Table 2. Coefficients for second point of VOHOBBDF.

Order b1 c2 a1,2 a2,2 a3,2 a4,2 a5,2 a6,2

3
7

25
− 4

25
− 1

25
7

25
−22

25
34
25

0 0

4
15
56

−1
7

1
56

−1
7

29
56

−8
7

83
56

0

5
232
889

−120
889

− 1
127

64
889

−267
889

680
889

−1205
889

1392
889

3. Implementation of VOHOBBDF

3.1. Performing Newton’s Iteration

VOHOBBDF method is implemented in Newton’s iteration form. Based on this
idea, Equations (5)–(7) for each point are expressed in Newton’s iteration form. Details explanation
can be found in [14]. The updated formulae can then be simplified as a linear system:

pe1 + qe2 = s

re1 + te2 = u
(8)

where
e1 = y(i+1)

n+1 − y(i)n+1, e2 = y(i+1)
n+2 − y(i)n+2,

p = 1− h3c1

(
∂ fn+1

∂yn+1

)
− h2c1β1

(
∂ fn+1

∂y′n+1

)
− hc1γ1

(
∂ fn+1

∂y”n+1

)
,

q = −b1 − h2c1β2

(
∂ fn+1

∂y′n+1

)
− hc1γ2

(
∂ fn+1

∂y”n+1

)
,

r = −b2 − h2c2 β̂1

(
∂ fn+2

∂y′n+2

)
− hc2γ̂1

(
∂ fn+2

∂y”n+2

)
,

t = 1− h3c2

(
∂ fn+2

∂yn+2

)
− h2c2 β̂2

(
∂ fn+2

∂y′n+2

)
− hc2γ̂2

(
∂ fn+2

∂y”n+2

)
,

s = −yn+1 + b1yn+2 + h3c1 f (yn+1, y
′
n+1, y

′′
n+1) +

k

∑
j=1

aj,1yn+j−k,
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u = −yn+2 + b2yn+1 + h3c2 f (yn+2, y
′
n+2, y

′′
n+2) +

k

∑
j=1

aj,2yn+j−k

Notice that β1, β2, β̂1, β̂2 are coefficients for yn+1 and yn+2 of first derivative while γ1, γ2, γ̂1, γ̂2

are the coefficients for yn+1 and yn+2 of second derivative.
In particular, the linear system in Equation (8) is used to approximate the solution in Equation (1).

3.2. Suitable Order Selection

This approach aims to fit the different orders of VOHOBBDF in single code. In this way, the code
is started to run the lowest order method first (third-order VOHOBBDF) followed by the higher order
VOHOBBDF. With such strategy, the most accurate solutions of two future points among the three
orders can be selected. Consequently, the best approximations at each step will be the two new values
in the current block.

The steps for selecting the appropriate order are explained below.
Step 1: Begin the computation of the linear system in Equation (8) with the lowest order

VOHOBBDF (order three) first, followed by computation of order four and five VOHOBBDF to
find the approximate solutions for two new points, yn+1 and yn+2.

Step 2: Compare the LTE produced by the three orders of VOHOBBDF.
Step 3: Hence, switch the code to the method with the least LTE to proceed for the next step.
The code is written in C language programme.

4. Numerical Experiments and Discussion

Three different problems were solved directly using the developed method by applying the
variable order approach. To analyze the efficiency of applying this approach, the results were compared
with two built-in stiff Matlab codes, ode15s and ode23s, which were designed to solve the stiff problems.
However, to solve these problems using the Matlab codes, they need to be reduced into their equivalent
systems of first order. The accuracy and efficiency of the methods are given in Tables 3–5 for comparison
purposes. Figures 1–3 illustrate the results in Tables 3–5.

Let E be the error,

(Ei)n =

∣∣∣∣ (yi)n − (y(xi))n

A + B(y(xi))n

∣∣∣∣
Therefore, the average error (AE) and maximum error (ME) are defined as

AE =

TS
∑

i=1

n
∑

i=1
(Ei)n

n(TS)
,

ME = max
1<i<TS

( max
1<i<n

(Ei)n)

where TS is the total steps and n is the number of equations.
The general form for equivalent system of first order ODE is as follows.

y′1 = y2,

y′2 = y3,

y′3 = wy1 + vy2 + zy3 (9)

Refer to the general form of third order ODE in Equation (1) and its equivalent form of first order
in Equation (4). The problems to be tested are as follows.
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Problem 1

α = −27,000, β = −2700, γ = −90,
Exact solution: y(x) = e−30x + 4xe−30x + 9x2e−30x,
Initial conditions: y(0) = 1, y′(0) = −26, y′′(0) = 678,
Interval: [0, 2]

Equivalent system of first order
w = −27, 000, v = −2700, z = −90,

Exact solutions:
y1 = e−30x + 4xe−30x + 9x2e−30x,
y2 = −26e−30x − 102xe−30x − 270x2e−30x,
y3 = 678e−30x + 2520xe−30x + 8100x2e−30x.

Initial conditions:
y1(0) = 1,
y2(0) = −26,
y3(0) = 678.

Problem 2
α = −1000, β = −300, γ = −30,
Exact solution: y(x) = − 1

2 x2e−10x,
Initial conditions: y(0) = 0, y′(0) = 0, y′′(0) = −1,
Interval: [0, 2]

Equivalent system of first order
w = −1000, v = −300, z = −30,

Exact solutions:
y1 = − 1

2 x2e−10x,
y2 = −e−10xx + 5x2e−10x,
y3 = −e−10x + 20xe−10x − 50x2e−10x.

Initial conditions:
y1(0) = 0,
y2(0) = 0,
y3(0) = −1.

Problem 3
α = −15, 000, β = −1850, γ = −75,
Exact solution: y(x) = 3e−20x + 7e−25x − 13e−30x,
Initial conditions: y(0) = −3, y′(0) = 155, y′′(0) = −6125,
Interval: [0, 2]

Equivalent system of first order
w = −60, 000, v = −4700, z = −120,

Exact solutions:
y1 = 3e−20x + 7e−25x − 13e−30x,
y2 = −60e−20x − 175e−25x + 390e−30x,
y3 = 1200e−20x + 4375e−25x − 11700e−30x.

Initial conditions:
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y1(0) = −3,
y2(0) = 155,
y3(0) = −6125.

Table 3. Numerical results for Problem 1.

h Method AE ME Total Steps ET(s)

0.01 VOHOBBDF 9.52776 × 10−4 1.69964 × 10−2 100 0.000752
ode15s 5.40856 × 10−3 6.37651 × 10−1 200 0.039062
ode23s 1.02200 × 10−2 5.75407 ×10−1 200 0.039062

0.001 VOHOBBDF 2.13783 × 10−5 3.40432 × 10−4 1000 0.002652
ode15s 7.73822 × 10−3 9.16663 × 10−1 2000 0.070312
ode23s 9.62600 × 10−3 5.60735 × 10−1 2000 0.054687

0.0001 VOHOBBDF 2.21621 × 10−7 3.52619 × 10−6 10000 0.024842
ode15s 7.75325 × 10−3 8.14285 × 10−1 20000 0.437500
ode23s 9.96859 × 10−3 5.81096 × 10−1 20000 0.296875

0.00001 VOHOBBDF 1.32033 × 10−7 1.74158 × 10−6 100000 0.249087
ode15s 7.74728 × 10−3 8.13635 × 10−1 200000 10.507812
ode23s 9.57598 × 10−3 5.57189 × 10−1 200000 12.578125

Table 4. Numerical results for Problem 2.

h Method AE ME Total Steps ET(s)

0.01 VOHOBBDF 5.76208 × 10−5 3.12829 × 10−4 100 0.000645
ode15s 1.01716 × 10−5 3.34008 × 10−4 200 0.070312
ode23s 2.31030 × 10−5 4.98225 × 10−4 200 0.062500

0.001 VOHOBBDF 8.29775 × 10−7 4.48794 × 10−6 1000 0.001214
ode15s 1.01906 × 10−5 3.40308 × 10−4 2000 0.125000
ode23s 2.31138 × 10−5 5.29203 × 10−4 2000 0.085937

0.0001 VOHOBBDF 8.47409 × 10−9 4.62483 × 10−8 10000 0.009719
ode15s 7.21904 × 10−6 4.00145 × 10−4 20000 0.828125
ode23s 2.30210 × 10−5 5.25468 × 10−4 20000 0.516075

0.00001 VOHOBBDF 9.96542 × 10−8 3.55634 × 10−7 100000 0.096912
ode15s 7.52337 × 10−6 3.75244 × 10−4 200000 16.101562
ode23s 2.31828 × 10−5 5.31723 × 10−4 200000 21.226562

Table 5. Numerical results for Problem 3.

h Method AE ME Total Steps ET(s)

0.01 VOHOBBDF 4.50236 × 10−3 8.84316 × 10−2 100 0.013748
ode15s 1.04430 × 10−1 1.32899 × 10+1 200 0.093750
ode23s 1.57275 × 10−1 1.06758 × 10+1 200 0.187500

0.001 VOHOBBDF 3.15549 × 10−5 5.55627 × 10−4 1000 0.010650
ode15s 8.07396 × 10−2 1.15260 × 10+1 2000 0.179687
ode23s 1.55158 × 10−1 1.05471 × 10+1 2000 0.148437

0.0001 VOHOBBDF 2.07591 × 10−7 3.62885 × 10−6 10000 0.071776
ode15s 7.30058 × 10−2 1.14937 × 10+1 20000 0.921875
ode23s 1.57193 × 10−1 1.06936 × 10+1 20000 0.593750

0.00001 VOHOBBDF 5.32785 × 10−7 8.65595 × 10−6 100000 0.112163
ode15s 7.28808 × 10−2 1.14840 × 10+1 200000 33.320312
ode23s 1.54741 × 10−1 1.05336 × 10+1 200000 44.414062
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Figure 1. Efficiency graph for Problem 1.

Figure 2. Efficiency graph for Problem 2.

Figure 3. Efficiency graph for Problem 3.

5. Discussion

As evident from the results in Tables 3–5 and Figures 1–3, the proposed method could improve
the accuracy of all the test problems. The results also show that VOHOBBDF obtained the smallest
maximum errors at different value of step sizes. Furthermore, the errors are also within the tolerance
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value. As shown in the results, VOHOBBDF successfully achieved less computational cost compared
to both Matlab codes. It is clearly observed that the number of total steps was reduced to half and the
method also sped up the execution time at all step sizes. Therefore, less time is needed to compute the
solutions. This is due to the benefit of block method, where VOHOBBDF managed to produce two
numerical approximations simultaneously at each step and approximate the solutions directly, thus
decreasing the computational time.

6. Conclusions

This research demonstrates that the adaptive order approach applied to VOHOBBDF methods
is significantly advantageous as it yields better performances over the built-in stiff Matlab codes.
The approximate results of all the problems are better in accuracy as the results obtained lower
maximum errors than both Matlab codes. The method also reduces computation time since the higher
order problems can be solved directly. Hence, VOHOBBDF has proven its superior performances and
reliability to be served as a direct solver for higher order stiff ODEs.
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The following abbreviations are used in this manuscript:

ME Maximum error
AE Average error
h Step size
ET(s) Execution time in seconds

References

1. Suleiman, M.B.; Ibrahim, Z.B.; Rasedee, A.F.N.B. Solution of higher-order ODEs using backward
difference method. Math. Probl. Eng. 2011, 2011, 810324. [CrossRef]

2. Yap, L.K.; Ismail, F. Four point block hybrid collocation method for direct solution of third order ordinary
differential equations. In Proceedings of the 25th National Symposium on Mathematical Sciences, Kuantan,
Malaysia, 27–29 August 2017; AIP Publishing: Melville, NY, USA, 2018; pp. 1–9.

3. Gear, C.W. The numerical integration of ordinary differential equations. In Mathematics of Computation;
American Mathematical Society: Providence, RI, USA, 1967; pp. 21, 146–156.

4. Hijazi, M.; Abdelrahim, R. The Numerical Computation of three step hybrid block method for directly
solving third order ordinary differential equations. Glob. J. Pure Appl. Math. 2017, 13, 89–103.

5. Adeyeye, O.; Omar, Z. New linear block method for third order ordinary differential Equations. J. Eng. Appl. Sci.
2018, 13, 4913.

6. Hussain, K.A.; Ismail, F.; Senu, N.; Rabiei, F. Fourth-order improved Runge–Kutta method for directly
solving special third-order ordinary differential equations. Iran. J. Sci. Technol. 2017, 41, 429–437. [CrossRef]

7. Gear, C.W. The automatic integration of stiff ordinary differential equations. In Proceedings of IFIP Congress;
North Holand Publishing Company: Amsterdam, The Netherlands, 1969; pp. 187–193.

8. Sumithra, B. Numerical solution of stiff system by backward euler method. Appl. Math. Sci. 2015, 9, 3303–3311.
[CrossRef]

9. Abdi, A. Construction of high-order quadratically stable second-derivative general linear methods for the
numerical integration of stiff ODEs. J. Comput. Appl. Math. 2016, 303, 218–228. [CrossRef]

10. Chollom, J.P.; Kumleng, G.M.; Longwap, S. High order block implicit multi-step (HOBIM) methods for the
solution of stiff ordinary differential equations. Int. J. Pure Appl. Math. 2014, 96, 483–505. [CrossRef]

http://dx.doi.org/10.1155/2011/810324
http://dx.doi.org/10.1007/s40995-017-0258-1
http://dx.doi.org/10.12988/ams.2015.54317
http://dx.doi.org/10.1016/j.cam.2016.02.054
http://dx.doi.org/10.12732/ijpam.v96i4.5


Symmetry 2019, 11, 1289 10 of 10

11. Ponalagusamy, R.; Ponnammal, K. A parallel fourth order rosenbrock method: Construction, analysis and
numerical comparison. Int. J. Appl. Comput. Math. 2015, 1, 45–68. [CrossRef]

12. Suleiman, M.B.; Musa, H.; Ismail, F.; Senu, N. A new variable step size block backward differentiation
formula for solving stiff IVPs. Int. J. Comput. Math. 2013, 90, 2391–2408. [CrossRef]

13. Zainuddin, N.; Ibrahim, Z.B.; Othman, K.I.; Suleiman, M.B. Direct fifth order block backward differentation
formulas for solving second order ordinary differential equations. Chiang Mai J. Sci. 2016, 43, 1171–1181.

14. Ibrahim, Z.B.; Mohd Nasir, N.A.A.; Othman, K.I.; Zainuddin, N. Adaptive order of block backward
differentiation formulas for stiff ODEs. Numer. Algebr. Control Optim. 2017, 7, 95–106. [CrossRef]

15. Asnor, A.I.; Yatim, S.A.M.; Ibrahim, Z.B. Algorithm of modified variable step block backward differentiation
formulae for solving first order stiff ODEs. In Proceedings of the 25th National Symposium on Mathematical
Sciences, Kuantan, Malaysia, 27–29 August 2017; AIP Publishing: Melville, NY, USA, 2018; pp. 1–11.

16. Ibrahim, Z.B.; Noor, N.M.; Othman, K.I. Fixed coefficient a(α) stable block backward differentiation formulas
for stiff ordinary differential equations. Symmetry 2019, 11, 846. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s40819-014-0002-x
http://dx.doi.org/10.1080/00207160.2013.776677
http://dx.doi.org/10.3934/naco.2017006
http://dx.doi.org/10.3390/sym11070846
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Procedure on Developing Variable Order Block Backward Differentiation Formulae
	Implementation of VOHOBBDF
	Performing Newton's Iteration
	Suitable Order Selection

	Numerical Experiments and Discussion
	Discussion
	Conclusions
	References

