On Some Initial and Initial Boundary Value Problems for Linear and Nonlinear Boussinesq Models
Abstract
:1. Introduction
2. Preliminaries
3. Problem Setting for a Singular Generalized Improved Modified Linear Boussinesq Equation
4. A Priori Estimate for the Solution of Problem (14)–(16)
5. The Modified Double Laplace Decomposition Method
6. A Nonlinear Singular Boussinesq Equation with Bessel Operator
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, G.; Kirby, J.T.; Grilli, S.T.; Subramanya, R. A fully nonlinear boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 1995, 294, 71–92. [Google Scholar] [CrossRef]
- Madsen, P.A.; Schaffer, H.A. Higher-order boussinesq-type equations for surface gravity waves: Derivation and analysis. Philos. Trans. R. Soc. Lond. A 1998, 356, 3123–3184. [Google Scholar] [CrossRef]
- Schneider, G. The Long Wave Limit for a Boussinesq Equation. SIAM J. Appl. Math. 1998, 58, 1237–1245. [Google Scholar] [CrossRef]
- Nwogu, O. Alternative form of boussinesq equations for nearshore wave propagation. J. Waterw. Port Coast. Ocean. Eng. 1993, 119, 618–638. [Google Scholar] [CrossRef]
- Kirby, J.T. Chapter Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents. In Advances in Coastal Modeling; Lakhan, V.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–41. [Google Scholar]
- Fernández, F.M. On the homotopy perturbation method for Boussinesq-like equations. Appl. Math. Comput. 2014, 230, 208–210. [Google Scholar] [CrossRef]
- Gupta, A.K.; Ray, S.S. Comparison between homotopy perturbation method and optimal homotopy asymptotic method for the soliton solutions of Boussinesq–Burger equations. Comput. Fluids 2014, 103, 34–41. [Google Scholar] [CrossRef]
- Lu, D.; Shen, J.; Cheng, Y. The approximate solutions of nonlinear Boussinesq equation. J. Phys. Conf. Ser. 2016, 710, 012001. [Google Scholar] [CrossRef] [Green Version]
- Petrovsky, I. On the Diffusion of Waves and the Lacunas for Hyperbolic Equations. Mat. Sb. 1945, 17, 289–370. [Google Scholar]
- Wazwaz, A.M. Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos Solitons Fractals 2001, 12, 1549–1556. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Q. Modified asymptotic Adomian decomposition method for solving Boussinesq equation of groundwater flow. Appl. Math. Mech. 2014, 35, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Attili, B.S. The Adomian decomposition method for solving the Boussinesq equation arising in water wave propagation. Numer. Method Partial Differ. Equ. 2006, 22, 1337–1347. [Google Scholar] [CrossRef]
- Patel, H.S.; Meher, R. Application of Laplace Adomian Decomposition Method for the soliton solutions of Boussinesq-Burger equations. Int. J. Adv. Appl. Math. Mech. 2015, 3, 50–58. [Google Scholar]
- Zhang, J.; Wu, Y.; Li, X. Quasi-periodic solution of the (2+1)-dimensional boussinesq-burgers soliton equation. Phys. A Stat. Mech. Its Appl. 2003, 319, 213–232. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, L.-F.; Li, C.-Y. Some new exact solutions of jacobian elliptic function about the generalized Boussinesq equation and Boussinesq Burgers equation. Chin. Phys. B 2008, 17, 403. [Google Scholar] [CrossRef]
- Wang, M.L. Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A 1995, 199, 169–172. [Google Scholar] [CrossRef]
- Fan, E. Extended tanh-function method and its applications to nonliear equations. Phys. Lett. A 2000, 277, 212–218. [Google Scholar] [CrossRef]
- Charles, J.; Daly, H.J. Morel-Seytoux, an Integral Transform Method for the Linearized Boussinesq Groundwater Flow Equation. Water Resourc. Res. 1981, 17, 875–884. [Google Scholar]
- Joseph, D.D. Nonlinear stability of the Boussinesq equations by the method of energy. Arch. Ration. Mech. Anal. 1966, 22, 163–184. [Google Scholar] [CrossRef]
- Mesloub, S.; Mesloub, F. On the higher dimension Boussinesq equation with nonclassical condition. Math. Meth. Appl. Sci. 2011, 34, 578–586. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Dowie, E. Rational solutions of the Boussinesq equation and applications to rogue waves. arXiv 2016, arXiv:1609.00503v2. [Google Scholar] [CrossRef]
- Jang, T.S. A new dispersion-relation preserving method for integrating the classical Boussinesq equation. Commun. Nonlinear Sci. Numer. Simulat. 2017, 43, 118–138. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, L.; Jain, P.C. Numerical solutions of the improved Boussinesq equation. Proc. Indian Acad. Sci. Math. Sci. 1980, 89, 171–181. [Google Scholar] [CrossRef]
- Bratsos, A.G. A predictor–corrector scheme for the improved Boussinesq equation. Chaos Solitons Fractals 2009, 40, 2083–2094. [Google Scholar] [CrossRef]
- Dehghan, M.; Salehi, R. A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation. Appl. Math. Model. 2012, 36, 1939–1956. [Google Scholar] [CrossRef]
- Boussinesq, J. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 1872, 17, 55–108. [Google Scholar]
- Onorato, M.; Osborne, A.R.; Janssen, P.A.E.M.; Resio, D. Four-wave resonant interactions in the classical quadratic Boussinesq equations. J. Fluid Mech. 2009, 618, 263–277. [Google Scholar] [CrossRef] [Green Version]
- Sidorov, N.; Loginov, B.; Sinitsyn, A.; Falaleev, M. Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications; Mathematics and Its Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Zamyshlyaeva, A.; Tsyplenkova, O. Optimal Control of Solutions of the Showalter-Sidorov-Dirichlet Problem for the Boussinesq-Love Equation. Differ. Equ. 2013, 49, 1356–1365. [Google Scholar] [CrossRef]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kiliçman, A.; Gadain, H.E. On the applications of Laplace and Sumudu transforms. J. Frankl. Inst. 2010, 347, 848–862. [Google Scholar] [CrossRef]
- Garding, L. Cauchy’s Problem for Hyperbolic Equations; Lecture notes; University of Chicago: Chicago, IL, USA, 1957. [Google Scholar]
- Mesloub, S. A nonlinear nonlocal mixed problem for a second order parabolic equation. J. Math. Anal. Appl. 2006, 316, 189–209. [Google Scholar] [CrossRef]
- Quintero, J.R. Nonlinear Stability of a One-Dimensional Boussinesq Equation. J. Dyn. Differ. Equ. 2003, 15, 125–142. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesloub, S.; Gadain, H.E. On Some Initial and Initial Boundary Value Problems for Linear and Nonlinear Boussinesq Models. Symmetry 2019, 11, 1273. https://doi.org/10.3390/sym11101273
Mesloub S, Gadain HE. On Some Initial and Initial Boundary Value Problems for Linear and Nonlinear Boussinesq Models. Symmetry. 2019; 11(10):1273. https://doi.org/10.3390/sym11101273
Chicago/Turabian StyleMesloub, Said, and Hassan Eltayeb Gadain. 2019. "On Some Initial and Initial Boundary Value Problems for Linear and Nonlinear Boussinesq Models" Symmetry 11, no. 10: 1273. https://doi.org/10.3390/sym11101273
APA StyleMesloub, S., & Gadain, H. E. (2019). On Some Initial and Initial Boundary Value Problems for Linear and Nonlinear Boussinesq Models. Symmetry, 11(10), 1273. https://doi.org/10.3390/sym11101273