On Energies of Charged Particles with Magnetic Field
Abstract
:1. Introduction
2. Preliminaries
3. Magnetic Curves, Spherical Images and Energy
3.1. -Magnetic Particles of the Tangent Indicatrix
3.2. The Energy of a -Magnetic Particle
3.3. -Magnetic Particles of the Quasi Normal Indicatrix
3.4. -Magnetic Particles of the Quasi Binormal Indicatrix
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Munteanu, M.I.; Nistor, A.I. The classification of Killing magnetic curves in S2 × . J. Geom. Phys. 2012, 62, 170–182. [Google Scholar] [CrossRef]
- Inoguchi, J.I.; Munteanu, M.I.; Nistor, A.I. Magnetic curves in quasi-Sasakian 3-manifolds. Anal. Math. Phys. 2019, 9, 43–61. [Google Scholar] [CrossRef]
- Munteanu, M.I. Magnetic trajectories on the unit tangent bundle of a Riemannian manifold. In Proceedings of the Third International Workshop Geometric Structures and Interdisciplinary Applications, Haifa, Israel, 9–12 May 2018. [Google Scholar]
- Inoguchi, J.I.; Munteanu, M.I. Magnetic curves in the real special linear group. arXiv 2018, arXiv:1811.11993. [Google Scholar]
- Kallinikos, N.; Meletlidou, E. Symmetries of charged particle motion under time-independent electromagnetic fields. J. Phys. Math. Theor. 2013, 46, 305202. [Google Scholar] [CrossRef] [Green Version]
- Caldiroli, P.; Cora, G. On the dynamics of a charged particle in magnetic fields with cylindrical symmetry. J. Differ. Equ. 2019, 267, 3952–3976. [Google Scholar] [CrossRef] [Green Version]
- Obayashi, H. Motion of a charged particle in a static magnetic field with axial symmetry. Prog. Theor. Phys. 1961, 25, 297–299. [Google Scholar] [CrossRef]
- Seymour, P.W.; Leipnik, R.B.; Nicholson, A.F. Charged Particle Motion in a Time? Dependent Axially Symmetric Magnetic Field. Aust. J. Phys. 1965, 18, 553–566. [Google Scholar] [CrossRef]
- O’Neil, B. Semi-Riemannian Geometry; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Druţă-Romaniuc, S.L.; Inoguchi, J.I.; Munteanu, M.I.; Nistor, A.I. Magnetic curves in cosymplectic manifolds. Rep. Math. Phys. 2016, 78, 33–48. [Google Scholar] [CrossRef]
- Bozkurt, Z.; Gök, I.; Yaylı, Y.; Ekmekci, F.N. A new approach for magnetic curves in 3D Riemannian manifolds. J. Math. Phys. 2014, 55, 053501. [Google Scholar] [CrossRef]
- Dede, M.; Ekici, C.; Tozak, H. Directional tubular surfaces. Int. J. Algebra 2015, 9, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Yazla, A.; Sariaydin, M.T. On Surfaces Constructed by Evolution According to Quasi Frame. Facta Univ. Ser. Math. Inform. 2019, in press. [Google Scholar]
- Körpinar, T.; Demirkol, R.C. On the Geometric Modelling of the Energy of Quasi Magnetic Curves. J. Adv. Phys. 2018, 7, 435–441. [Google Scholar] [CrossRef]
- Wood, C.M. On the energy of a unit vector field. Geom. Dedicata 1997, 64, 319–330. [Google Scholar] [CrossRef]
- Bas, S. A New Version of Spherical Magnetic Curves in the De-Sitter Space s2. Symmetry 2018, 10, 606. [Google Scholar] [CrossRef]
- Carmo, M.P.D. Riemannian Geometry; Birkhäuser: Basel, Switzerland, 1992. [Google Scholar]
- Ozdemir, Z.; Gok, İ.; Yayli, Y.; Ekmekci, F.N. Notes on magnetic curves in 3D semi-Riemannian manifolds. Turk. J. Math. 2015, 39, 412–426. [Google Scholar] [CrossRef] [Green Version]
- Munteanu, M.I.; Nistor, A.I. On some closed magnetic curves on a 3-torus. Math. Phys. Anal. Geom. 2017, 20, 8. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sariaydin, M.T. On Energies of Charged Particles with Magnetic Field. Symmetry 2019, 11, 1204. https://doi.org/10.3390/sym11101204
Sariaydin MT. On Energies of Charged Particles with Magnetic Field. Symmetry. 2019; 11(10):1204. https://doi.org/10.3390/sym11101204
Chicago/Turabian StyleSariaydin, Muhammed Talat. 2019. "On Energies of Charged Particles with Magnetic Field" Symmetry 11, no. 10: 1204. https://doi.org/10.3390/sym11101204