A Multi-Criteria Group Decision Making Model for Green Supplier Selection under the Ordered Weighted Hesitant Fuzzy Environment
Abstract
:1. Introduction
2. Preliminaries
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (1)
- If, then
- (2)
- If, then
- (3)
- If, then
3. GOWHFPWA Operator and Its Properties
4. The MCGDM Approach with Order Weighted Hesitant Fuzzy Information
5. Numerical Example
6. Performance Analysis and Comparation Analysis
7. Conclusions and Further Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, S.; Shen, B.; Choi, T.M.; Jung, S. A review on supply chain contracts in reverse logistics: Supply chain structures and channel leaderships. J. Clean. Prod. 2017, 144, 387–402. [Google Scholar] [CrossRef]
- Blome, C.; Hollos, D.; Paulraj, A. Green procurement and green supplier development: Antecedents and effects on supplier performance. Int. J. Prod. Econ. 2014, 124, 252–264. [Google Scholar] [CrossRef]
- Ho, W.; Xu, X.; Dey, P.K. Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. Eur. J. Oper. Res. 2010, 202, 16–24. [Google Scholar] [CrossRef]
- Chai, J.; Liu, J.N.; Ngai, E.W. Application of decision-making techniques in supplier selection: A systematic review of literature. Expert. Syst. Appl. 2013, 40, 3872–3885. [Google Scholar] [CrossRef]
- Deng, X.; Hu, Y.; Deng, Y.; Mahadevan, S. Supplier selection using AHP methodology extended by D numbers. Expert. Syst. Appl. 2014, 41, 156–167. [Google Scholar] [CrossRef]
- Govindan, K.; Rajendran, S.; Sarkis, J.; Murugesan, P. Multi criteria decision making approaches for green supplier evaluation and selection: A literature review. J. Clean. Prod. 2015, 98, 66–83. [Google Scholar] [CrossRef]
- Handfield, R.; Walton, S.V.; Sroufe, R.; Melnyk, S.A. Applying environmental criteria to supplier assessment: A study in the application of the analytical hierarchy process. Eur. J. Oper. Res. 2002, 141, 70–87. [Google Scholar] [CrossRef]
- Lu, L.Y.Y.; Wu, C.H.; Kuo, T.C. Environmental principles applicable to green supplier evaluation by using multi-objective decision analysis. Int. J. Prod. Res. 2007, 45, 4317–4331. [Google Scholar] [CrossRef]
- Hsu, C.W.; Hu, A.H. Applying hazardous substance management to supplier selection using analytic network process. J. Clean. Prod. 2009, 17, 255–264. [Google Scholar] [CrossRef]
- Kuo, R.J.; Wang, Y.C.; Tien, F.C. Integration of artificial neural network and MAMD methods for green supplier selection. J. Clean. Prod. 2010, 18, 1161–1170. [Google Scholar] [CrossRef]
- Bai, C.; Sarkis, J. Green supplier development: Analytical evaluation using rough set theory. J. Clean. Prod. 2010, 18, 1200–1210. [Google Scholar] [CrossRef]
- Yeh, W.C.; Chuang, M.C. Using multi-objective genetic algorithm for partner selection in green supply chain problems. Expert. Syst. Appl. 2011, 38, 4244–4253. [Google Scholar] [CrossRef]
- Zhou, R.; Ma, X.; Li, S.; Li, J. The green supplier selection method for chemical industry with analytic network process and radial basis function neural network. Adv. Inf. Sci. Serv. Sci. 2012, 4, 147–158. [Google Scholar]
- Kuo, R.J.; Lin, Y.J. Supplier selection using analytic network process and data envelopment analysis. Int. J. Prod. Res. 2012, 50, 2852–2863. [Google Scholar] [CrossRef]
- Jauhar, S.K.; Pant, M.; Deep, A. An approach to solve multi-criteria supplier selection while considering environmental aspects using differential evolution. In Proceedings of Swarm, Evolutionary, and Memetic Computing; Springer International Publishing: Switzerland, 2013; Volume 8297, pp. 199–208. [Google Scholar]
- Dobos, I.; Vörösmarty, G. Green supplier selection and evaluation using DEA-type composite indicators. Int. J. Prod. Econ. 2014, 157, 273–278. [Google Scholar] [CrossRef]
- Freeman, J.; Chen, T. Green supplier selection using an AHP-Entropy-TOPSIS framework. Supply Chain Manag. An Int. J. 2015, 20, 327–340. [Google Scholar] [CrossRef]
- Hashemi, S.H.; Karimi, A.; Tavana, M. An integrated green supplier selection approach with analytic network process and improved Grey relational analysis. Int. J. Prod. Econ. 2015, 159, 178–191. [Google Scholar] [CrossRef]
- Yazdani, M.; Chatterjee, P.; Zavadskas, E.K.; Zolfani, S.H. Integrated QFD-MCDM framework for green supplier selection. J. Clean. Prod. 2017, 142, 3728–3740. [Google Scholar] [CrossRef]
- Liu, B.; Yang, X.; Huo, T.; Shen, G.Q.; Wang, X. A linguistic group decision making framework for bid evaluation in mega public projects considering carbon dioxide emissions reduction. J. Clean. Prod. 2017, 148, 811–825. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–356. [Google Scholar] [CrossRef]
- Akman, G. Evaluating suppliers to include green supplier development programs via Fuzzy c-means and VIKOR methods. Comput. Ind. Eng. 2015, 86, 69–82. [Google Scholar] [CrossRef]
- Lourenzutti, R.; Krohling, R.A. The hellinger distance in multicriteria decision making: An illustration to the TOPSIS and TODIM methods. Expert. Syst. Appl. 2014, 41, 4414–4421. [Google Scholar] [CrossRef]
- Tseng, M.L.; Lin, Y.H.; Tan, K.; Chen, R.H.; Chen, Y.H. Using TODIM to evaluate green supply chain practices under uncertainty. Appl. Math. Model. 2014, 38, 2983–2995. [Google Scholar] [CrossRef]
- Govindan, K.; Khodaverdi, R.; Jafarian, A. A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. J. Clean. Prod. 2013, 47, 345–354. [Google Scholar] [CrossRef]
- Chiou, C.Y.; Hsu, C.W.; Hwang, W.Y. Comparative investigation on green supplier selection of the American, Japanese and Taiwanese electronics industry in China. In Proceedings of the IEEE International Conference on IE&EM, Singapore, 8–11 December 2008; pp. 1909–1914. [Google Scholar]
- Lee, A.H.I.; Kang, H.Y.; Hsu, C.F.; Hung, H.C. A green supplier selection model for high-tech industry. Expert. Syst. Appl. 2009, 36, 7917–7927. [Google Scholar] [CrossRef]
- Tsai, W.H.; Hung, S.J. A fuzzy goal programming approach for green supply chain optimization under activity-based costing and performance evaluation with a value-chain structure. Int. J. Prod. Res. 2009, 47, 4991–5017. [Google Scholar] [CrossRef]
- Tuzkaya, G.; Ozgen, A.; Ozgen, D.; Tuzkaya, U.R. Environmental performance evaluation of suppliers: A hybrid fuzzy multi-criteria decision approach. Int. J. Environ. Sci. Technol. 2009, 6, 477–490. [Google Scholar] [CrossRef] [Green Version]
- Büyüközkan, G.; Çifçi, G. A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert. Syst. Appl. 2012, 39, 3000–3011. [Google Scholar] [CrossRef]
- Datta, S.; Samantra, C.; Mahapatra, S.S.; Banerjee, S.; Bandyopadhya, A. Green supplier evaluation and selection using VIKOR method embedded in fuzzy expert system with interval-valued fuzzy numbers. Int. J. Procure. Manag. 2012, 5, 647–678. [Google Scholar] [CrossRef]
- Shen, L.; Olfat, L.; Govindan, K.; Khodaverdi, R.; Diabat, A. A fuzzy multi criteria approach for evaluating green supplier’s performance in green supply chain with linguistic preferences. Resour. Conserv. Recycl. 2013, 74, 170–179. [Google Scholar] [CrossRef]
- Wang, X.; Chan, H.K. A hierarchical fuzzy TOPSIS approach to assess improvement areas when implementing green supply chain initiatives. Int. J. Prod. Res. 2013, 51, 3117–3130. [Google Scholar] [CrossRef]
- Cao, Q.W.; Wu, J.; Liang, C.Q. An intuitionsitic fuzzy judgment matrix and TOPSIS integrated multi-criteria decision making method for green supplier selection. J. Intell. Fuzzy Syst. 2014, 28, 117–126. [Google Scholar]
- Kannan, D.; Govindan, K.; Rajendran, S. Fuzzy axiomatic design approach based green supplier selection: A case study from Singapore. J. Clean. Prod. 2015, 96, 194–208. [Google Scholar] [CrossRef]
- Hamdan, S.; Cheaitou, A. Supplier selection and order allocation with green criteria: An MCDM and multi-objective optimization approach. Comput. Oper. Res. 2016, 81, 282–304. [Google Scholar] [CrossRef]
- Guo, Z.X.; Liu, H.T.; Zhang, D.Q.; Yang, J. Green supplier evaluation and selection in apparel manufacturing using a fuzzy multi-criteria decision-making approach. Sustainability 2017, 9, 650–663. [Google Scholar]
- Xu, Y.; Cabrerizo, F.J.; Herrera-Viedma, E. A consensus model for hesitant fuzzy preference relations and its application in water allocation management. Appl. Soft Comput. 2017, 58, 265–284. [Google Scholar] [CrossRef]
- Tsui, C.W.; Tzeng, G.H.; Wen, P.U. A hybrid MCDM approach for improving the performance of green suppliers in the TFT-LCD Industry. Int. J. Prod. Res. 2015, 53, 6436–6454. [Google Scholar] [CrossRef]
- Darabi, S.; Heydari, J. An interval-valued hesitant fuzzy ranking method based on group decision analysis for green supplier selection. IFAC PapersOnLine 2016, 49, 12–17. [Google Scholar] [CrossRef]
- Gitinavard, H.; Ghaderi, H.; Pishvaeeet, S.M. Green supplier evaluation in manufacturing systems: A novel interval-valued hesitant fuzzy group outranking approach. Soft Comput. 2017, 3, 1–20. [Google Scholar] [CrossRef]
- Qin, J.; Liu, X.; Pedrycz, W. An extended todim multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment. Eur. J. Oper. Res. 2017, 258, 626–638. [Google Scholar] [CrossRef]
- Tang, S.L. Green supplier selection model with hesitant fuzzy information. J. Intell Fuzzy. Syst. 2017, 32, 189–195. [Google Scholar] [CrossRef]
- Krohling, R.A.; Pacheco, A.G.C.; Siviero, A.L.T. IF-TODIM: An intuitionistic fuzzy TODIM to multi-criteria decision making. Knowl. Base Syst. 2013, 53, 142–146. [Google Scholar] [CrossRef]
- Torra, V.; Narukawa, Y. On hesitant fuzzy sets and decision. In Proceedings of the IEEE International Conference on Fuzzy Systems Fuzzy Systems, Jeju Island, South Korea, 20–24 August 2009; pp. 1378–1382. [Google Scholar]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Rodríguez, R.M.; Martínez, L.; Torra, V.; Xu, Z.S.; Herrera, F. Hesitant fuzzy sets: State of the art and future directions. Int. J. Intell. Syst. 2014, 29, 495–524. [Google Scholar] [CrossRef]
- Chen, N.; Xu, Z.S.; Xia, M.M. Interval-valued hesitant preference relations and their applications to group decision making. Knowl. Based. Syst. 2013, 37, 528–540. [Google Scholar] [CrossRef]
- Yu, D.J.; Zhang, W.Y.; Xu, Y.J. Group decision making under hesitant fuzzy environment with application to personnel evaluation. Knowl. Based Syst. 2013, 52, 1–10. [Google Scholar] [CrossRef]
- Peng, D.H.; Gao, C.Y.; Gao, Z.F. Generalized hesitant fuzzy synergetic weighted distance measures and their application to multiple criteria decision making. Appl. Math. Model. 2013, 37, 5837–5850. [Google Scholar] [CrossRef]
- Farhadinia, B. Correlation for dual hesitant fuzzy sets and dual interval-valued hesitant fuzzy sets. Int. J. Intell. Syst. 2014, 29, 184–205. [Google Scholar] [CrossRef]
- Rodríguez, R.M.; Martínez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Syst. 2012, 20, 109–119. [Google Scholar] [CrossRef]
- Dong, Y.C.; Chen, X.; Herrera, F. Minimizing adjusted simple terms in the consensus reaching process with hesitant linguistic assessments in group decision making. Inf. Sci. 2015, 297, 95–117. [Google Scholar] [CrossRef]
- Farhadinia, B. Distance and similarity measures for higher order hesitant fuzzy sets. Knowl. Based Syst. 2014, 55, 43–48. [Google Scholar] [CrossRef]
- Morente-Molinera, J.A.; Kou, G.; González-Crespo, R.; Corchado, J.M.; Herrera-Viedma, E. Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl. Syst. 2017, 137, 54–64. [Google Scholar] [CrossRef]
- Alcantud, J.C.R.; Giarlotta, A. Necessary and possible hesitant fuzzy sets: A novel model for group Decision making. Inf. Fusion 2018, 46, 63–76. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, C. Weighted hesitant fuzzy sets and their application to multi-criteria decision making. British J. Math. Comput. Sci. 2014, 4, 1091–1123. [Google Scholar] [CrossRef]
- Farhadinia, B.; Xu, Z.S. Distance and aggregation-based methodologies for hesitant fuzzy decision making. Cogn. Comput. 2017, 9, 81–94. [Google Scholar] [CrossRef]
- Yager, R.R. Prioritized aggregation operators. Int. J. Approx. Reason. 2008, 48, 263–274. [Google Scholar] [CrossRef]
- Xia, M.; Xu, Z.S. Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 2011, 52, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.W. Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowl. Based Syst. 2012, 31, 176–182. [Google Scholar] [CrossRef]
- Qua, G.H.; Zhang, H.P.; Qua, W.H.; Zhang, Z.H. Induced generalized dual hesitant fuzzy Shapley hybrid operators and their application in multi-attributes decision making. J. Intell. Fuzzy Syst. 2016, 31, 633–650. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M.; Tang, X.Y.; Wei, Y. Pythagorean hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 1197–1233. [Google Scholar] [CrossRef]
- Galankashi, M.R.; Chegeni, A.; Soleimanynanadegany, A.; Memari, A.; Anjomshoae, A.; Helmi, S.A.; Dargi, A. Prioritizing green supplier selection criteria using fuzzy analytical network process. Procedia CIRP 2015, 26, 689–694. [Google Scholar] [CrossRef]
- Mousakhani, S.; Nazari-Shirkouhi, S.; Bozorgi-Amiri, A. A novel interval type-2 fuzzy evaluation model based group decision analysis for green supplier selection problems: A case study of battery industry. J. Clean. Prod. 2017, 168, 205–218. [Google Scholar] [CrossRef]
- Omurca, S.I. An intelligent supplier evaluation, selection and development system. Appl. Soft Comput. 2013, 13, 690–697. [Google Scholar] [CrossRef]
- Alcantud, J.C.R.; Santos-García, G. Expanded hesitant fuzzy sets and group decision making. In Proceedings of the IEEE International Conference on Fuzzy Systems, Naples, Italy, 9–12 July 2017. [Google Scholar]
Variable | Criterion | Definition | Authors |
---|---|---|---|
c1 | Cost | Total cost of product and service | Yeh and Chuang [12], Govindan et al. [6], Mousakhani et al. [65] |
c2 | Quality | The quality of product and service | Omurca [66], Govindan et al. [6], Mousakhani et al. [65] |
c3 | Service | Performance in terms of product service and social service | Omurca [66], Kannan et al. [35], Govindan et al. [6] |
c4 | Environment | Environmental protection; certification and materials recycling capacity | Govindan et al. [6], Mousakhani et al. [65], Lee et al. [27] |
c5 | Technology | Ability to facilitate the development of green products | Lee et al. [27], Govindan et al. [6], Mousakhani et al. [65] |
c6 | Management | Capcity for environmental management | Kuo et al. [12], Tseng et al. [24], Mousakhani et al. [65] |
c7 | Responsibility | Including safety production, social morality and public interest | Galankashi, et al. [6], Mousakhani et al. [65] |
x1 | {<0.3,2/6>,<0.5,1/6>,<0.8,3/6>} | {<0.3,2/6>,<0.6,1/6>,<0.7,3/6>} | {<0.3,2/6>,<0.6,1/6>,<0.7,3/6>} | {<0.4,2/6>,<0.5,1/6>,<0.6,3/6>} |
x2 | {<0.1,2/6>,<0.4,1/6>,<0.5,3/6>} | {<0.2,2/6>,<0.3,1/6>,<0.5,3/6>} | {<0.1,2/6>,<0.4,1/6>,<0.5,3/6>} | {<0.2,2/6>,<0.3,1/6>,<0.4,3/6>} |
x3 | {<0.1,2/6>,<0.2,1/6>,<0.3,3/6>} | {<0.1,2/6>,<0.2,1/6>,<0.4,3/6>} | {<0.1,2/6>,<0.2,1/6>,<0.3,3/6>} | {<0.1,2/6>,<0.2,1/6>,<0.4,3/6>} |
x4 | {<0.3,2/6>,<0.4,1/6>,<0.7,3/6>} | {<0.2,2/6>,<0.3,1/6>,<0.6,3/6>} | {<0.1,2/6>,<0.5,1/6>,<0.7,3/6>} | {<0.3,2/6>,<0.4,1/6>,<0.5,3/6>} |
x5 | {<0.7,2/6>,<0.8,1/6>,<0.9,3/6>} | {<0.5,2/6>,<0.7,1/6>,<0.8,3/6>} | {<0.4,2/6>,<0.6,1/6>,<0.7,3/6>} | {<0.5,2/6>,<0.6,1/6>,<0.7,3/6>} |
α | x1 | x2 | x3 | x4 | x5 | Rankings |
---|---|---|---|---|---|---|
0.1 | 0.5666 | 0.3527 | 0.2255 | 0.4777 | 0.7176 | |
0.2 | 0.5667 | 0.3529 | 0.2256 | 0.4780 | 0.7180 | |
0.5 | 0.5670 | 0.3535 | 0.2258 | 0.4791 | 0.7192 | |
1 | 0.5676 | 0.3547 | 0.2262 | 0.4809 | 0.7211 | |
2 | 0.5689 | 0.3581 | 0.2270 | 0.4847 | 0.7254 | |
5 | 0.5737 | 0.3703 | 0.2309 | 0.4941 | 0.7389 | |
10 | 0.5836 | 0.3854 | 0.2389 | 0.5045 | 0.7581 |
x1 | {0.3,0.5,0.8} | {0.3,0.6,0.7} | {0.3,0.6,0.7} | {0.4,0.5,0.6} |
x2 | {0.1,0.4,0.5} | {0.2,0.3,0.5} | {0.1,0.4,0.5} | {0.2,0.3,0.4} |
x3 | {0.1,0.2,0.3} | {0.1,0.2,0.4} | {0.1,0.2,0.3} | {0.1,0.2,0.4} |
x4 | {0.3,0.4,0.7} | {0.2,0.3,0.6} | {0.1,0.5,0.7} | {0.3,0.4,0.5} |
x5 | {0.7,0.8,0.9} | {0.5,0.7,0.8} | {0,4,0.6,0.7} | {0.5,0.6,0.7} |
Methods | x1 | x2 | x3 | x4 | x5 | Ranking Order |
---|---|---|---|---|---|---|
GOWHFPWA | 0.5676 | 0.3547 | 0.2262 | 0.4809 | 0.7211 | |
HFPWA | 0.5689 | 0.3581 | 0.2270 | 0.4847 | 0.7254 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Jin, L.; Zhu, F. A Multi-Criteria Group Decision Making Model for Green Supplier Selection under the Ordered Weighted Hesitant Fuzzy Environment. Symmetry 2019, 11, 17. https://doi.org/10.3390/sym11010017
Liu Y, Jin L, Zhu F. A Multi-Criteria Group Decision Making Model for Green Supplier Selection under the Ordered Weighted Hesitant Fuzzy Environment. Symmetry. 2019; 11(1):17. https://doi.org/10.3390/sym11010017
Chicago/Turabian StyleLiu, Yumin, Linlin Jin, and Feng Zhu. 2019. "A Multi-Criteria Group Decision Making Model for Green Supplier Selection under the Ordered Weighted Hesitant Fuzzy Environment" Symmetry 11, no. 1: 17. https://doi.org/10.3390/sym11010017