Determining An Unknown Boundary Condition by An Iteration Method
Abstract
:1. Introduction
- The reversed-time problem (RTP): is unknown;
- the inverse boundary problem (IBP): the Dirichlet or Neumann condition is unknown;
- the inverse coefficient problem (ICP): , or is unknown; and
- the inverse heat source (sink) problem (IHSP): is unknown.
2. Problem Statement
3. Analysis of VIM
4. Illustrative Examples
4.1. Example 1
4.2. Example 2
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
IPHCE | Inverse Problem of Heat Conduction Equation |
IBP | inverse boundary problem |
ICP | inverse coefficient problem |
IHSP | inverse heat source (sink) problem |
RTP | reversed-time problem |
VIM | variational iteration method |
References
- Beck, J.V. Surface Heat Flux Determination Using an Integral Method. Nucl. Eng. Des. 1968, 7, 170–178. [Google Scholar] [CrossRef]
- Beck, J.V. Nonlinear Estimation Applied to the Nonlinear Heat Conduction Problem. Int. J. Heat Mass Transf. 1970, 13, 703–716. [Google Scholar] [CrossRef]
- Beck, J.V.; Litkouhi, B.; St. Clair, C.R., Jr. Efficient Sequential Solution of the Nonlinear Inverse Heat Conduction Problem. Numer. Heat Transf. 1982, 5, 275–286. [Google Scholar] [CrossRef]
- France, D.M.; Chiang, T. Analytical Solution to Inverse Heat Conduction Problems with Periodicity. J. Heat Transf. 1980, 102, 579–581. [Google Scholar]
- Bass, B.R. Applications of the Finite Element to the Inverse Heat Conduction Problem Using Beck’s Second Method. J. Eng. Ind. 1980, 102, 168–176. [Google Scholar] [CrossRef]
- Howse, T.K.J.; Kent, R.; Rawson, H. The Determination of Glass-Mould Heat Fluxes from Mould Temperature Measurements. Glass Technol. 1971, 12, 91–93. [Google Scholar]
- Alkidas, A.L. Heat Transfer Characteristics of a Spark-Ignition Engine. J. Heat Transf. 1980, 102, 189–193. [Google Scholar] [CrossRef]
- Gu, J.F.; Pan, J.S.; Hu, M.J. Inverse heat conduction analysis of synthetical surface heat transfer coefficient during quenching process. J. Shanghai Jiaotong Univ. 1998, 32, 18–22. [Google Scholar]
- Li, H.P.; He, L.F.; Zhang, C.Z.; Cui, H.Z. Solution of boundary heat transfer coefficients between hot stamping die and cooling water based on FEM and optimization method. Heat Mass Transf. 2016, 52, 805–817. [Google Scholar] [CrossRef]
- Molhem, H.; Pourgholi, R. A numerical algorithm for solving a one-dimensional inverse heat conduction problem. J. Math. Stat. 2008, 4, 98–101. [Google Scholar] [CrossRef]
- Jia, X.Z.; Wang, Y.B. A boundary integral method for solving inverse heat conduction problem. J. Inverse Ill-Posed Probl. 2006, 14, 375–384. [Google Scholar] [CrossRef]
- Wang, B.; Zou, G.; Zhao, P.; Wang, Q. Finite volume method for solving a one-dimensional parabolic inverse problem. Appl. Math. Comput. 2011, 217, 5227–5235. [Google Scholar] [CrossRef]
- Lesnic, D.; Elliott, L.; Ingham, D. Application of the boundary element method to inverse heat conduction problems. Int. J. Heat Mass Transf. 1996, 39, 1503–1517. [Google Scholar] [CrossRef]
- Shidfar, A.; Zolfaghari, R.; Damirchi, J. Application of sinc-collocation method for solving an inverse problem. J. Comput. Appl. Math. 2009, 233, 545–554. [Google Scholar] [CrossRef]
- Pourgholi, R.; Rostamian, M. A numerical technique for solving IHCPs using Tikhonov regularization method. Appl. Math. Model. 2010, 34, 2102–2110. [Google Scholar] [CrossRef]
- Cannon, J.R. An existence and uniqueness theorem. In The One-Dimensional Heat Equation; Rota, G.C., Ed.; Addison-Wesley: Boston, MA, USA, 1984; p. 62. [Google Scholar]
- Cannon, J.R. The inhomogeneous heat equation. In The One-Dimensional Heat Equation; Rota, G.C., Ed.; Addison-Wesley: Boston, MA, USA, 1984; pp. 339–340. [Google Scholar]
- He, J.H. Variational iteration method: Some recent results and new interpretations. J. Comput. Appl. Math. 2007, 207, 3–17. [Google Scholar] [CrossRef]
- Kafash, B.; Delavarkhalafi, A.; Karbassi, S.M. Application of variational iteration method for Hamilton-Jacobi-Bellman equations. Appl. Math. Model. 2013, 37, 3917–3928. [Google Scholar] [CrossRef]
- He, J.H.; Kong, H.Y.; Chen, R.X.; Hu, M.S.; Chen, Q.L. Variational iteration method for Bratu-like equation arising in electrospinning. Carbohyd. Polym. 2014, 105, 29–230. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.C.; Baleanu, D.; Deng, Z.G. Variational iteration method as a kernel constructive technique. Appl. Math. Model. 2015, 39, 4378–4384. [Google Scholar] [CrossRef]
- Martin, O. A modified variational iteration method for the analysis of viscoelastic beams. Appl. Math. Model. 2016, 40, 7988–7995. [Google Scholar] [CrossRef]
- Tatari, M.; Dehghan, M. On the convergence of He’s variational iteration method. J. Comput. Appl. Math. 2007, 207, 121–128. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Li, Y.; Pei, D. Determining An Unknown Boundary Condition by An Iteration Method. Symmetry 2018, 10, 409. https://doi.org/10.3390/sym10090409
Huang D, Li Y, Pei D. Determining An Unknown Boundary Condition by An Iteration Method. Symmetry. 2018; 10(9):409. https://doi.org/10.3390/sym10090409
Chicago/Turabian StyleHuang, Dejian, Yanqing Li, and Donghe Pei. 2018. "Determining An Unknown Boundary Condition by An Iteration Method" Symmetry 10, no. 9: 409. https://doi.org/10.3390/sym10090409