A New Evaluation for Solving the Fully Fuzzy Data Envelopment Analysis with Z-Numbers
Abstract
:1. Introduction
2. Preliminaries
2.1. Definitions
- (i)
- (ii)
- (iii)
- where,.
- (i)
- if and only if.
- (ii)
- if and only if.
2.2. Converting a Z-Number into a Fuzzy Number
- Step 1:
- Convert the second part into a crisp number. Defuzzification transforms a fuzzy number into a crisp value. The most commonly used defuzzification technique is the centroid defuzzification approach. This calculation is completed by using Equation (6).We noted that when , Equation (6) becomes as follows:
- Step 2:
- The weighted Z-number can be defined as:
- Step 3:
- By multiplying , convert the weighted Z-number into the following classical fuzzy number:
3. DEA, FDEA and FFDEA
4. Sotoudeh-Anvari et al.’s Algorithm
- Step 1:
- Consider the inputs and outputs of each DMU as well as their weights by using Z-numbers. Using the Charnes and Cooper transformation we have:
- Step 2:
- Using the Kang et al. [50] model, convert Z-numbers into usual fuzzy numbers. Then the inputs and outputs of each DMU convert into and . Furthermore, their weights will be , and we have:
- Step 3:
- The fuzzy DEA Equation (16) can be transformed into the following DEA model:
- Step 4:
- Convert the fuzzy DEA Equation (17) into the following LP model:
- Step 5:
- Run Equation (18) and obtain the optimal solutions of and .
5. Main Results
5.1. The Shortcoming of the Existing Algorithm
5.2. Improvement Model for FFDEA with Z-Numbers
- Step 1:
- Consider the DEA model that the inputs and outputs of each DMU as well as their weights are Z-numbers.
- Step 2:
- Using Kang et al.’s [50] model, convert Z-numbers into usual fuzzy numbers and obtain a fully fuzzy DEA model with triangular fuzzy numbers.
- Step 3:
- Using Definition 11, the fully fuzzy DEA model of Step 2 can be transformed into the following model:
- Step 4:
- Based on Definitions 7 and 8, convert the fuzzy DEA Equation (19) into the following model:
- Step 5:
- Based on Definition 12, convert Equation (20) into the following model:
- Step 6:
- Obtain the optimal solutions of and .
6. Numerical Example
- Step 1:
- Obtain a fully fuzzy DEA model with triangular fuzzy numbers:
- Step 2:
- Using the Definition 11, the fully fuzzy DEA model of Step 2 can be transformed into the following model:
- Step 3:
- Based on Definitions 7 and 8, convert the above fuzzy DEA model to the following model:
- Step 4:
- Based on Definition 12, convert the above model to the following model:
7. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Cooper, W.W.; Park, K.S.; Yu, G. IDEA and AR-IDEA: Models for dealing with imprecise data in DEA. Manag. Sci. 1999, 45, 597–607. [Google Scholar] [CrossRef]
- Despotis, D.K.; Smirlis, Y.G. Data envelopment analysis with imprecise data. Eur. J. Oper. Res. 2002, 140, 24–36. [Google Scholar] [CrossRef]
- Kao, C. Interval efficiency measures in data envelopment analysis with imprecise data. Eur. J. Oper. Res. 2006, 174, 1087–1099. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Parker, B.R.; Tavares, G. Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Econ. Plan. Sci. 2008, 42, 151–157. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Abbasian-Naghneh, S. Data envelopment analysis with imprecise data. Appl. Math. Sci. 2011, 5, 3089–3106. [Google Scholar]
- Liu, J.S.; Lu, L.Y.; Lu, W.M. Research fronts in data envelopment analysis. Omega 2016, 58, 33–45. [Google Scholar] [CrossRef]
- Wei, G.; Wang, J. A comparative study of robust efficiency analysis and data envelopment analysis with imprecise data. Expert Syst. Appl. 2017, 81, 28–38. [Google Scholar] [CrossRef]
- Chen, Y.; Cook, W.D.; Du, J.; Hu, H.; Zhu, J. Bounded and discrete data and Likert scales in data envelopment analysis: Application to regional energy efficiency in China. Ann. Oper. Res. 2017, 255, 347–366. [Google Scholar] [CrossRef]
- Toloo, M.; Keshavarz, E.; Hatami-Marbini, A. Dual-role factors for imprecise data envelopment analysis. Omega 2018, 77, 15–31. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Z.; Yao, L.; Tu, Y.; Lev, B.; Pedrycz, W. A novel Data Envelopment Analysis model for evaluating industrial production and environmental management system. J. Clean. Prod. 2018, 170, 773–788. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Bellman, R.E.; Zadeh, L.A. Decision-making in a fuzzy environment. Manag. Sci. 1970, 17, 141–164. [Google Scholar] [CrossRef]
- Tanaka, H.; Asai, K. A formulation of fuzzy linear programming based on comparison of fuzzy number. Control Cybern. 1984, 13, 185–194. [Google Scholar]
- Campos, L.; Verdegay, J.L. Linear programming problems and ranking of fuzzy numbers. Fuzzy Sets Syst. 1989, 32, 1–11. [Google Scholar] [CrossRef]
- Zimmermann, H.J. Fuzzy Set Theory—And Its Applications; Springer Science Business Media: Berlin, Germany, 2011. [Google Scholar]
- Edalatpanah, S.A.; Shahabi, S. A new two-phase method for the fuzzy primal simplex algorithm. Int. Rev. Pure Appl. Math. 2012, 8, 157–164. [Google Scholar]
- Saberi Najafi, H.; Edalatpanah, S.A.; Dutta, H. A nonlinear model for fully fuzzy linear programming with fully unrestricted variables and parameters. Alex. Eng. J. 2016, 55, 2589–2595. [Google Scholar] [CrossRef]
- Saberi Najafi, S.; Edalatpanah, S.A. A Note on A new method for solving fully fuzzy linear programming problems. Appl. Math. Model. 2013, 37, 7865–7867. [Google Scholar] [CrossRef]
- Rodríguez, R.M.; Martínez, L.; Herrera, F.; Torra, V. A Review of Hesitant Fuzzy Sets: Quantitative and Qualitative Extensions. In Fuzzy Logic in Its 50th Year; Springer International Publishing: Cham, Switzerland, 2016; pp. 109–128. [Google Scholar]
- Das, S.K.; Edalatpanah, S.A.; Mandal, T. A proposed model for solving fuzzy linear fractional programming problem: Numerical Point of View. J. Comput. Sci. 2018, 25, 367–375. [Google Scholar] [CrossRef]
- Sengupta, J.K. A fuzzy systems approach in data envelopment analysis. Comput. Math. Appl. 1992, 24, 259–266. [Google Scholar] [CrossRef]
- Triantis, K.; Girod, O. A mathematical programming approach for measuring technical efficiency in a fuzzy environment. J. Prod. Anal. 1998, 10, 85–102. [Google Scholar] [CrossRef]
- Kao, C.; Liu, S.T. Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets Syst. 2000, 113, 427–437. [Google Scholar] [CrossRef]
- Dia, M. A model of fuzzy data envelopment analysis. Inf. Syst. Oper. Res. 2004, 42, 267–279. [Google Scholar] [CrossRef]
- Garcia, P.A.A.; Schirru, R.; Melo, P.F.F.E. A fuzzy data envelopment analysis approach for FMEA. Prog. Nucl. Energy 2005, 46, 359–373. [Google Scholar] [CrossRef]
- Wang, Y.M.; Luo, Y.; Liang, L. Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises. Expert Syst. Appl. 2009, 36, 5205–5211. [Google Scholar] [CrossRef]
- Wang, Y.M.; Chin, K.S. Fuzzy data envelopment analysis: A fuzzy expected value approach. Expert Syst. Appl. 2011, 38, 11678–11685. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Tavana, M.; Hatami-Marbini, A. The state of the art in fuzzy data envelopment analysis. In Performance Measurement with Fuzzy Data Envelopment Analysis; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–45. [Google Scholar]
- Puri, J.; Yadav, S.P. A fuzzy DEA model with undesirable fuzzy outputs and its application to the banking sector in India. Expert Syst. Appl. 2014, 41, 6419–6432. [Google Scholar] [CrossRef]
- Wanke, P.; Barros, C.P.; Emrouznejad, A. Assessing productive efficiency of banks using integrated Fuzzy-DEA and bootstrapping: A case of Mozambican banks. Eur. J. Oper. Res. 2016, 249, 378–389. [Google Scholar] [CrossRef]
- Hatami-Marbini, A.; Agrell, P.J.; Tavana, M.; Khoshnevis, P. A flexible cross-efficiency fuzzy data envelopment analysis model for sustainable sourcing. J. Clean. Prod. 2017, 142, 2761–2779. [Google Scholar] [CrossRef]
- Nastis, S.A.; Bournaris, T.; Karpouzos, D. Fuzzy data envelopment analysis of organic farms. Oper. Res. 2017, 1–14. [Google Scholar] [CrossRef]
- Lio, W.; Liu, B. Uncertain data envelopment analysis with imprecisely observed inputs and outputs. Fuzzy Optim. Decis. Mak. 2017, 17, 357–373. [Google Scholar] [CrossRef]
- Hu, C.F.; Liu, F.B. Data envelopment analysis with non-LR type fuzzy data. Soft Comput. 2017, 21, 5851–5857. [Google Scholar] [CrossRef]
- Hu, C.K.; Liu, F.B.; Hu, C.F. Efficiency measures in fuzzy data envelopment analysis with common weights. J. Ind. Manag. Optim. 2017, 13, 237–249. [Google Scholar] [CrossRef]
- Izadikhah, M.; Khoshroo, A. Energy management in crop production using a novel Fuzzy Data Envelopment Analysis model. RAIRO-Oper. Res. 2018, 52, 595–617. [Google Scholar] [CrossRef]
- Amirkhan, M.; Didehkhani, H.; Khalili-Damghani, K.; Hafezalkotob, A. Mixed uncertainties in data envelopment analysis: A fuzzy-robust approach. Expert Syst. Appl. 2018, 103, 218–237. [Google Scholar] [CrossRef]
- Rezaee, M.J.; Jozmaleki, M.; Valipour, M. Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange. Phys. A Stat. Mech. Appl. 2018, 489, 78–93. [Google Scholar] [CrossRef]
- Wang, S.; Yu, H.; Song, M. Assessing the efficiency of environmental regulations of large-scale enterprises based on extended fuzzy data envelopment analysis. Ind. Manag. Data Syst. 2018, 118, 463–479. [Google Scholar] [CrossRef]
- Mu, W.; Kanellopoulos, A.; van Middelaar, C.E.; Stilmant, D.; Bloemhof, J.M. Assessing the impact of uncertainty on benchmarking the eco-efficiency of dairy farming using fuzzy data envelopment analysis. J. Clean. Prod. 2018, 189, 709–717. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Z.; Chai, J.; Yao, L.; Wang, S.; Lev, B. Efficiency evaluation for banking systems under uncertainty: A multi-period three-stage DEA model. Omega 2018, in press. [Google Scholar] [CrossRef]
- Hatami-Marbini, A.; Tavana, M.; Ebrahimi, A. A fully fuzzified data envelopment analysis model. Int. J. Inf. Decis. Sci. 2011, 3, 252–264. [Google Scholar]
- Kazemi, M.; Alimi, A. A fully fuzzy approach to data envelopment analysis. J. Math. Comput. Sci. 2014, 11, 238–245. [Google Scholar] [CrossRef]
- Puri, J.; Yadav, S.P. A fully fuzzy approach to DEA and multi-component DEA for measuring fuzzy technical efficiencies in the presence of undesirable outputs. Int. J. Syst. Assur. Eng. Manag. 2015, 6, 268–285. [Google Scholar] [CrossRef]
- Khaleghi, S.; Noura, A.; Lotfi, F.H. Measuring Efficiency and Ranking Fully Fuzzy DEA. Indian J. Sci. Technol. 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Sotoudeh-Anvari, A.; Najafi, E.; Sadi-Nezhad, S. A new data envelopment analysis in fully fuzzy environment on the base of the degree of certainty of information. J. Intell. Fuzzy Syst. 2016, 30, 3131–3142. [Google Scholar] [CrossRef]
- Zadeh, L.A. A note on Z-numbers. Inf. Sci. 2011, 181, 2923–2932. [Google Scholar] [CrossRef]
- Kang, B.; Wei, D.; Li, Y.; Deng, Y. A method of converting Z-number to classical fuzzy number. J. Inf. Comput. Sci. 2012, 9, 703–709. [Google Scholar]
- Allahviranloo, T.; Hosseinzadeh Lotfi, F.; Kiasary, M.K.; Kiani, N.A.; Alizadeh, L. Solving fully fuzzy linear programming problem by the ranking function. Appl. Math. Sci. 2008, 2, 19–32. [Google Scholar]
- Guo, P.; Tanaka, H. Fuzzy DEA: A perceptual evaluation method. Fuzzy Sets Syst. 2001, 119, 149–160. [Google Scholar] [CrossRef]
DMU | Inputs 1 | Inputs 2 | Outputs 1 | Outputs 2 |
---|---|---|---|---|
A | ((4.51, 5.16, 5.80), MH) | ((2.125, 2.348, 2.572), VH) | ((2.870, 3.110, 3.349), H) | ((4.545, 4.904, 5.263), H) |
B | ((3.46, 3.46, 3.46), H) | ((1.674, 1.794, 1.913), H) | ((2.460, 2.460, 2.460), VH) | ((4.263, 4.521, 4.780), MH) |
C | ((4.92, 5.48, 6.04), VH) | ((2.631, 3.11, 3.588), H) | ((3.229, 3.827, 4.425), H) | ((4.809, 5.704, 6.599), VH) |
D | ((4.80, 5.80, 6.79), M) | ((2.460, 2.572, 2.684), VH) | ((2.971, 3.229, 3.746), MH) | ((7.779, 8.062, 8.345), M) |
E | ((7.05, 7.77, 8.49), H) | ((4.647, 5.293, 5.938), MH) | ((6.223, 7.213, 8.203), M) | ((7.775, 8.851, 9.928), H) |
Linguistic Term | Abbreviation | Corresponding TFNs |
---|---|---|
Very Low | VL | (0.1, 0.2, 0.3) |
Low | L | (0.2, 0.3, 0.4) |
Medium Low | ML | (0.3, 0.4, 0.5) |
Medium | M | (0.4, 0.5, 0.6) |
Medium High | MH | (0.5, 0.6, 0.7) |
High | H | (0.6, 0.7, 0.8) |
Very High | VH | (0.7, 0.8, 0.9) |
DMU | Inputs 1 | Inputs 2 | Outputs 1 | Outputs 2 |
---|---|---|---|---|
A | (4, 0.5, 0.5) | (2.1, 0.2, 0.2) | (2.6, 0.2, 0.2) | (4.1, 0.3, 0.3) |
B | (2.9, 0, 0) | (1.5, 0.1, 0.1) | (2.2, 0, 0) | (3.5, 0.2, 0.2) |
C | (4.9, 0.5, 0.5) | (2.6, 0.4, 0.4) | (3.2, 0.5, 0.5) | (5.1, 0.8, 0.8) |
D | (4.1, 0.7, 0.7) | (2.3, 0.1, 0.1) | (2.5, 0.2, 0.4) | (5.7, 0.2, 0.2) |
E | (6.1, 0.2, 1) | (4.1, 0.5, 0.5) | (5.1, 0.7, 0.7) | (7.4, 0.9, 0.9) |
DMUB | DMUC | DMUD | DMUE | |
---|---|---|---|---|
DMUs | A | B | C | D | E |
---|---|---|---|---|---|
A | - | 0.4308 | 0.4308 | 0.3943 | 0.4308 |
B | 0.5692 | - | 0.5 | 0.5557 | 0.5 |
C | 0.5692 | 0.5 | - | 0.5557 | 0.5 |
D | 0.6257 | 0.4443 | 0.4443 | - | 0.4443 |
E | 0.5692 | 0.5 | 0.5 | 0.5557 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namakin, A.; Najafi, S.E.; Fallah, M.; Javadi, M. A New Evaluation for Solving the Fully Fuzzy Data Envelopment Analysis with Z-Numbers. Symmetry 2018, 10, 384. https://doi.org/10.3390/sym10090384
Namakin A, Najafi SE, Fallah M, Javadi M. A New Evaluation for Solving the Fully Fuzzy Data Envelopment Analysis with Z-Numbers. Symmetry. 2018; 10(9):384. https://doi.org/10.3390/sym10090384
Chicago/Turabian StyleNamakin, Ali, Seyyed Esmaeil Najafi, Mohammad Fallah, and Mehrdad Javadi. 2018. "A New Evaluation for Solving the Fully Fuzzy Data Envelopment Analysis with Z-Numbers" Symmetry 10, no. 9: 384. https://doi.org/10.3390/sym10090384