# Flight Stability Analysis of a Symmetrically-Structured Quadcopter Based on Thrust Data Logger Information

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

^{†}

^{‡}

## Abstract

**:**

## 1. Introduction

## 2. Thrust Data Logger Model

## 3. Data Processing

#### 3.1. Thrust Data Logger

#### 3.2. Dynamic Movement of Quadcopter

_{xx}, I

_{yy}, and I

_{zz}are presented in Equation (11), considering that the rotors are assimilated as material points. The inertia moments are calculated based on angular momentum in the body-frame coordinate, with the mass of a quadcopter $\left({M}_{T}\right)\text{}\mathrm{concentrated}\text{}\mathrm{in}\text{}\mathrm{its}\text{}\mathrm{center}\text{}\mathrm{of}\text{}\mathrm{mass},\text{}\mathrm{and}\text{}\mathrm{the}\text{}\mathrm{radius}\text{}\left({R}_{C}\right).$ The weight of the rotor $\left({m}_{r}\right)$ and the distance between the frame and the rotor $\left(L\right)$ will affect the inertia moments for each axis. Because of the quadcopter’s symmetry, the value of the inertia moments for the x- and y-axis are equal. The motion of the quadcopter, especially the rotor’s thrust, affects its attitude.

#### 3.3. PID Control System

## 4. Result and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Ajmera, J.; Sankaranarayanan, V. Point to Point Control of a Quadrotor: Theory and Experiment. IFAC Pap. Online
**2016**, 49, 401–406. [Google Scholar] [CrossRef] - Schopp, P.; Klingbeil, L.; Peters, C.; Buhmann, A.; Manoli, Y. Sensor Fusion Algorithm and Calibration for a Gyroscope-free IMU. Procedia Chem.
**2009**, 1, 1323–1326. [Google Scholar] [CrossRef] - Benzerrouk, H.; Nebylov, A.; Li, M. Multi-UAV Doppler Information Fusion for Target Based on Distributed High Degrees Information Filters. Aerospace
**2018**, 5, 28. [Google Scholar] [CrossRef] - Czyba, R.; Szafranski, G. Control Structure Impact on the Flying Performance of the Multi-Rotor VTOL Platform-Design, Analysis and Experimental Validation. Int. J. Adv. Robot. Syst.
**2013**, 10, 62. [Google Scholar] [CrossRef] - Hrishikeshavan, V.; Chopra, I. Performance, Flight Testing of Shrouded Rotor Micro Air Vehicle in Edgewise Gusts. J. Aircr.
**2012**, 49, 193–205. [Google Scholar] [CrossRef] - Jayakrishnan, H.J. Position and Attitude Control of a Quadrotor UAV using Super Twisting Sliding Mode. IFAC Pap. Online
**2016**, 49, 284–289. [Google Scholar] [CrossRef] - Doukhi, O.; Fayjie, A.R.; Lee, D.J. Intelligent Controller Design for Quad-Rotor Stabilization in Presence of Parameter Variations. J. Adv. Transp.
**2017**, 2017, 1–10. [Google Scholar] [CrossRef][Green Version] - Tesch, D.A.; Eckhard, D.; Guarienti, W.C. Pitch and Roll Control of a Quadcopter using Cascade Iterative Feedback Tuning. IFAC Pap. Online
**2016**, 49, 30–35. [Google Scholar] [CrossRef] - Yushu, Y.; Ding, X. A Quadrotor Test Bench for Six Degree of Freedom Flight. J. Intell. Robot. Syst.
**2012**, 68, 323–337. [Google Scholar] [CrossRef] - Malandrakis, K.; Dixon, R.; Savvaris, A.; Tsourdos, A. Design and Development of a Novel Spherical UAV. IFAC Pap. Online
**2016**, 49, 320–325. [Google Scholar] [CrossRef] - Liu, T.; Inoue, Y.; Shibata, K. Wearable Force Sensor with Parallel Structure for Measurement of Ground Reaction Force. Measurement
**2007**, 40, 644–653. [Google Scholar] [CrossRef] - Aghili, F. Design of a Load Cell with Large Overload Capacity. Trans. Can. Soc. Mech. Eng.
**2010**, 34, 449–461. [Google Scholar] [CrossRef] - Maranzano, B.J.; Hancock, B.C. Quantitative Analysis of Impact Measurements using Dynamic Load Cells. Sens. Biosens. Res.
**2016**, 7, 31–37. [Google Scholar] [CrossRef] - Casas, O.V.; Dalazen, R.; Balbinot, A. 3D Load Cell for Measure force in Bicycle Crank. Measurement
**2016**, 93, 189–201. [Google Scholar] [CrossRef] - Richiedei, D.; Trevisani, A. Shaper-Based Filters for the Compensation of The Load Cell Response in Dynamic Mass Measurement. Mech. Syst. Signal Process.
**2017**, 98, 281–291. [Google Scholar] [CrossRef] - Huang, S.C. Development and Implementation of Load Cell in Weight Measurement Application for Shear Force. Int. J. Electron. Electr. Eng.
**2017**, 5, 240–244. [Google Scholar] [CrossRef] - Lee, W.K.; Yoon, H.; Han, C.; Joo, K.M.; Park, K.S. Physiological Signal Monitoring Bed for Infants Based on Load-Cell Sensors. Sensors
**2016**, 16, 409. [Google Scholar] [CrossRef] [PubMed] - Tinkerforge. Available online: http://www.tinkerforge.com/en/shop/load-cell-1kg-czl635.html (accessed on 21 January 2018).
- Ma, J.; Song, A.; Pan, D. Dynamic Compensation for Two-Axis Robot Wrist Force Sensors. J. Sens.
**2013**. [Google Scholar] [CrossRef] - Mohammed, A.A.S.; Moussa, W.A.; Lou, E. High Sensitivity MEMS Strain Sensor: Design and Simulation. Sensors
**2008**, 8, 2642–2661. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ballo, F.; Gobbi, M.; Mastinu, G.; Previati, G.A. Six Load Cell for the Analysis of The Dynamic Impact Response of a Hybrid III Dummy. Meas. J.
**2016**, 90, 309–317. [Google Scholar] [CrossRef] - Adamo, F.; Andria, G.; Di Nisio, A.; Carducci, C.; Guarnieri, C.; Lay-Ekuakille, A.; Mattencini, G.; Spadavecchia, M. Designing and Prototyping a Sensor Head for Test and Certification of UAV Components. Int. J. Smart Sens. Intell. Syst.
**2017**, 10, 646–672. [Google Scholar] [CrossRef] - Kluger, J.M.; Sapsis, T.P.; Slocum, A.H. A High-Resolution and Large Force-Range Load Cell by Means of Nonlinear Cantilever Beams. Precisi. Eng.
**2016**, 43, 241–256. [Google Scholar] [CrossRef] - Boschetti, G.; Caracciolo, R.; Richiedei, D.; Trevisani, A. Model-based Dynamic Compensation of Load Cell response in weighing machines Affected by Environtmental Vibrations. Mech. Syst. Signal Process.
**2013**, 34, 116–130. [Google Scholar] [CrossRef] - Cetinsoy, E.; Dikyar, S.; Hançer, C.; Oner, K.T.; Sirimoglu, E.; Unel, M.; Aksit, M.F. Design and Construction of a Novel Quad Tilt-Wing UAV. Mechatoronics
**2012**, 22, 723–745. [Google Scholar] [CrossRef] - Bouzid, Y.; Siguerdidjane, H.; Bestaoui, Y. Nonlinear Internal Model Control Applied to VTOL Multi-Rotors UAV. Mechatronics
**2017**, 47, 49–66. [Google Scholar] [CrossRef] - Huang, H.; Hoffmann, G.; Waslander, S.; Tomlin, C.J. Aerodynamics and Control of Autonomous Quadcopters in Aggresive Maneuvering. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3277–3282. [Google Scholar] [CrossRef]
- Magnussen, O.; Ottestad, M.; Hovland, G. Experimental Validation of a Quaternion-based Attitude Estimation with Direct Input to a Quadcopter Control System. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013; pp. 480–485. [Google Scholar] [CrossRef]
- Patel, K.; Barve, J. Modeling, Simulation, and Control Study for the Quadcopter UAV. In Proceedings of the 2014 9th International Conference on Industrial and Information Systems (ICIIS), Gwalior, India, 15–17 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Kuantama, E.; Vesselenyi, T.; Dzitac, S.; Tarca, R. PID and Fuzzy-PID Control Model for Quadcopter Attitude with Disturbance Parameter. Int. J. Comput. Commun. Control
**2017**, 12, 519–532. [Google Scholar] [CrossRef] - Moghaddam, H.F.; Vasegh, N. Robust PID Stabilization of Linear Neutral Time Delay System. Int. J. Comput. Commun. Control
**2014**, 9, 201–208. [Google Scholar] [CrossRef] - Bolandi, H.; Rezaei, M.; Mohsenipour, R.; Nemati, H.; Smailzadeh, S.M. Attitude Control of a Quadrotor with Optimized PID Controller. Intell. Control Autom. J.
**2013**, 4, 335–342. [Google Scholar] [CrossRef] - Ardupilot—Ground Station (GCS) Software. Available online: http://ardupilot.org/planner/index.html (accessed on 18 October 2017).
- Hanafi, D.; Qetkeaw, M.; Ghazali, R.; Than, M.N.M.; Utomo, W.M.; Omar, R. Simple GUI Wireless Controller of Quadcopter. Int. J. Commun. Netw. Syst. Sci.
**2013**, 6, 52–59. [Google Scholar] [CrossRef] - Romano, E.; Todeschini, M.G.; Vigano, G.P.; Sacco, M. DroneAGE: An Advamced Graphic Environment for Planning and Control of Drone Missions. In Proceedings of the Conference and Exhibition of the European Association of Virtual and Augmented Reality, Bremen, Germany, 8–10 December 2014. [Google Scholar] [CrossRef]
- Sanchez-Lopez, J.L. A Vision Based Aerial Robot Solution for the Mission 7 of the International Aerial Robotics Competition. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 1391–1400. [Google Scholar] [CrossRef]
- Obome, M. Mission Planner Software and Data Sheet. Available online: http://www.ardupilot.org/planner/docs/common-install-mission-planner.html (accessed on 25 September 2017).

**Table 1.**Specifications of load cell sensor [18].

Load Cell Sensor—CZL635 | |
---|---|

Load-cell material | Aluminum |

Rated output | 0.7 ± 0.15 mV/V |

Repeatability | 0.05% Full scale |

Creep | 0.05% Full scale for 10 min |

Zero balance | ±1.0% Full scale |

Maximum excitation | 18 Volt |

Maximum capacity | 1 kg |

Input impedance | 1000 ± 10 Ω |

Output impedance | 1000 ± 3 Ω |

Parameter | Rate Roll | Rate Pitch |
---|---|---|

Proportional Gain | 0.215 | 0.235 |

Integral Gain | 0.140 | 0.140 |

Derivative Gain | 0.010 | 0.047 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kuantama, E.; Tarca, I.; Dzitac, S.; Dzitac, I.; Tarca, R.
Flight Stability Analysis of a Symmetrically-Structured Quadcopter Based on Thrust Data Logger Information. *Symmetry* **2018**, *10*, 291.
https://doi.org/10.3390/sym10070291

**AMA Style**

Kuantama E, Tarca I, Dzitac S, Dzitac I, Tarca R.
Flight Stability Analysis of a Symmetrically-Structured Quadcopter Based on Thrust Data Logger Information. *Symmetry*. 2018; 10(7):291.
https://doi.org/10.3390/sym10070291

**Chicago/Turabian Style**

Kuantama, Endrowednes, Ioan Tarca, Simona Dzitac, Ioan Dzitac, and Radu Tarca.
2018. "Flight Stability Analysis of a Symmetrically-Structured Quadcopter Based on Thrust Data Logger Information" *Symmetry* 10, no. 7: 291.
https://doi.org/10.3390/sym10070291