Multi-Granulation Neutrosophic Rough Sets on a Single Domain and Dual Domains with Applications
Abstract
:1. Introduction
2. Preliminary
- (1)
- A ⊆ C iff ∀ y ϵ Y, TA(y) ≤ TC(y), IA(y) ≥ IC(y) and FA(y) ≥ FC(y)
- (2)
- Ac = {(y, FA(y), 1 − IA(y), TA(y)) | y ϵ Y}
- (3)
- A ∩ C = {(y, TA(y) ∧ TC(y), IA(y) ∨ IC(y), FA(y) ∨ FC(y)) | y ϵ Y}
- (4)
- A ∪ C = {(y, TA(y) ∨ TC(y), IA(y) ∧ IC(y), FA(y) ∧ FC(y)) | y ϵ Y}
3. Multi-Granulation Neutrosophic Rough Sets
- (1)
- , ;
- (2)
- , ;
- (3)
- , ;
- (4)
- , ;
- (5)
- ;
- (6)
- ;
- (7)
- ,;
- (8)
- , .
4. Multi-Granulation Neutrosophic Rough Sets on Dual Domains
- (1)
- , ;
- (2)
- , ;
- (3)
- , ;
- (4)
- , ;
- (5)
- ;
- (6)
- ;
- (7)
- , ;
- (8)
- , .
5. An Application of Multi-Granulation Neutrosophic Rough Set on Dual Domains
5.1. Problem Description
5.2. New Method
5.3. Algorithm and Pseudo-Code
Algorithm 1. Multi-granulation neutrosophic decision algorithm. |
Input Multi-granulation neutrosophic decision information systems (U, V, ). Output The optimal choice for the client. Step 1 Computing , , , of neutrosophic set C about (U, V, ); Step 2 From Definition 4., we get and ; Step 3 From Definition 5., we computer and (i = 1, 2, …, m); Step 4 The optimal decision-making is to choose xh if . pseudo-code Begin Input (U, V, ), where U is the decision set, V is the criteria set, and denotes the binary neutrosophic relation between criteria set and decision set. Calculate , , , . Where , , , , which represents the optimistic and pessimistic multi-granulation lower and upper approximation of C, which is defined in Section 4. Calculate and , which is defined in Definition 4. Calculate and , which is defined in Definition 5. For i = 1, 2, …, m; j = 1, 2, …, n; l = 1, 2, …, k; If , then → Max, else → Max, If , then → Max; Print Max; End |
5.4. An Example
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Li, T.; Luo, C.; Horng, S.-J.; Wang, G. A decision-theoretic rough set approach for dynamic data mining. IEEE Trans. Fuzzy Syst. 2015, 23, 1958–1970. [Google Scholar] [CrossRef]
- Cheng, Y.; Miao, D.Q.; Feng, Q.R. Positive approximation and converse approximation in interval-valued fuzzy rough sets. Inf. Sci. 2011, 181, 2086–2110. [Google Scholar] [CrossRef]
- Dai, J.H.; Wang, W.T.; Xu, Q.; Tian, H.W. Uncertainty measurement for interval-valued decision systems based on extended conditional entropy. Knowl.-Based Syst. 2012, 27, 443–450. [Google Scholar] [CrossRef]
- Greco, S.; Slowinski, R.; Zielniewicz, P. Putting dominance-based rough set approach and robust ordinal regression together. Decis. Support Syst. 2013, 54, 91–903. [Google Scholar] [CrossRef]
- Jia, X.; Shang, L.; Zhou, B.; Yao, Y. Generalized attribute reduct in rough set theory. Knowl.-Based Syst. 2016, 91, 204–218. [Google Scholar] [CrossRef]
- Li, J.H.; Mei, C.L.; Lv, Y.J. Incomplete decision contexts: Approximate concept construction, rule acquisition and knowledge reduction. Int. J. Approx. Reason. 2013, 54, 149–165. [Google Scholar] [CrossRef]
- Qian, Y.; Liang, X.; Wang, Q.; Liang, J.; Liu, B.; Skowron, A.; Yao, Y.; Ma, J.; Dang, C. Local rough set: A solution to rough data analysis in big data. Int. J. Approx. Reason. 2018, 97, 38–63. [Google Scholar] [CrossRef]
- Zhan, J.; Malik, H.; Akram, M. Novel decision-making algorithms based on intuitionistic fuzzy rough environment. Int. J. Mach. Learn. Cyber. 2018, 1–27. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, NM, USA, 1998. [Google Scholar]
- Smarandache, F. Neutrosophic set—A generialization of the intuitionistics fuzzy sets. Int. J. Pure Appl. Math. 2005, 24, 287–297. [Google Scholar]
- Wang, H.; Smarandache, F.; Sunderraman, R.; Zhang, Y.Q. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Infinite Study (Cornell University): Ithaca, NY, USA, 2005. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Zhang, X.; Bo, C.; Smarandache, F.; Dai, J. New inclusion relation of neutrosophic sets with applications and related lattice structrue. Int. J. Mach. Learn. Cybern. 2018, 1–11. [Google Scholar] [CrossRef]
- Garg, H.; Nancy, G.H. Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making. J. Ambient Intell. Humaniz. Comput. 2018, 1–23. [Google Scholar] [CrossRef]
- Garg, H.; Nancy, G.H. Non-linear programming method for multi-criteria decision making problems under interval neutrosophic set environment. Appl. Intell. 2018, 48, 2199–2213. [Google Scholar] [CrossRef]
- Nancy, G.H.; Garg, H. Novel single-valued neutrosophic decision making operators under frank norm operations and its application. Int. J. Uncertain. Quantif. 2016, 6, 361–375. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 1990, 17, 191–209. [Google Scholar] [CrossRef]
- Broumi, S.; Smarandache, F.; Dhar, M. Rough neutrosophic sets. Neutrosophic Sets Syst. 2014, 3, 62–67. [Google Scholar]
- Yang, H.L.; Zhang, C.L.; Guo, Z.L.; Liu, Y.L.; Liao, X. A hybrid model of single valued neutrosophic sets and rough sets: Single valued neutrosophic rough set model. Soft Comput. 2017, 21, 6253–6267. [Google Scholar] [CrossRef]
- Bargiela, A.; Pedrycz, W. Granular computing. In Handbook on Computational Intelligence: Fuzzy Logic, Systems, Artificial Neural Networks, and Learning Systems; World Scientific: Singapore, 2016; Volume 1, pp. 43–66. [Google Scholar]
- Qian, Y.; Liang, J.Y.; Yao, Y.Y.; Dang, C.Y. MGRS: A multi-granulation rough set. Inf. Sci. 2010, 180, 949–970. [Google Scholar] [CrossRef]
- Skowron, A.; Stepaniuk, J.; Swiniarski, R. Modeling rough granular computing based on approximation spaces. Inf. Sci. 2012, 184, 20–43. [Google Scholar] [CrossRef]
- Qian, Y.; Liang, J.Y.; Pedrycz, W.; Dang, C.Y. An efficient accelerator for attribute reduction from incomplete data in rough set framework. Pattern Recognit. 2011, 44, 1658–1670. [Google Scholar] [CrossRef]
- AbuDonia, H.M. Multi knowledge based rough approximations and applications. Knowl.-Based Syst. 2012, 26, 20–29. [Google Scholar] [CrossRef]
- Wang, H.B.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single Valued Neutrosophic Sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
- Huang, B.; Guo, C.; Zhuang, Y.; Li, H.; Zhou, X. Intuitionistic fuzzy multi-granulation rough sets. Inf. Sci. 2014, 277, 299–320. [Google Scholar] [CrossRef]
- Zhang, X.; Miao, D.; Liu, C.; Le, M. Constructive methods of rough approximation operators and multi-granulation rough sets. Knowl.-Based Syst. 2016, 91, 114–125. [Google Scholar] [CrossRef]
- Yao, Y.; She, Y. Rough set models in multi-granulation spaces. Inf. Sci. 2016, 327, 40–56. [Google Scholar] [CrossRef]
- Sun, B.; Ma, W.; Qian, Y. Multigranulation fuzzy rough set over two universes and its application to decision making. Knowl.-Based Syst. 2017, 123, 61–74. [Google Scholar] [CrossRef]
- Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
- Altuzarra, A.; Moreno-Jiménez, J.; Salvador, M. Consensus building in AHP-group decision making: A Bayesian approach. Oper. Res. 2010, 58, 1755–1773. [Google Scholar] [CrossRef]
- Zhang, X.H.; Bo, C.X.; Smarandache, F.; Park, C. New operations of totally dependent-neutrosophic sets and totally dependent-neutrosophic soft sets. Symmetry 2018, 10, 187. [Google Scholar] [CrossRef]
- Zhang, X.H.; Smarandache, F.; Liang, X.L. Neutrosophic duplet semi-group and cancellable neutrosophic triplet groups. Symmetry 2017, 9, 275. [Google Scholar] [CrossRef]
- Zhang, X.H. Fuzzy anti-grouped filters and fuzzy normal filters in pseudo-BCI algebras. J. Intell. Fuzzy Syst. 2017, 33, 1767–1774. [Google Scholar] [CrossRef]
- Zhang, X.H.; Park, C.; Wu, S.P. Soft set theoretical approach to pseudo-BCI algebras. J. Intell. Fuzzy Syst. 2018, 34, 559–568. [Google Scholar] [CrossRef]
- Garg, H.; Arora, R. Dual Hesitant Fuzzy soft aggregation operators and their application in decision-making. Cogn. Comput. 2018, 1–21. [Google Scholar] [CrossRef]
- Garg, H.; Kumar, K. An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making. Soft Comput. 2018, 22, 4959–4970. [Google Scholar] [CrossRef]
- Selvachandran, G.; Garg, H.; Quek, S.G. Vague entropy measure for complex vague soft sets. Entropy 2018, 20, 403. [Google Scholar] [CrossRef]
- Garg, H. Some new biparametric distance measures on single-valued neutrosophic sets with applications to pattern recognition and medical diagnosis. Information 2017, 8, 162. [Google Scholar] [CrossRef]
R1 | z1 | z2 | z3 |
---|---|---|---|
z1 | (0.4, 0.5, 0.4) | (0.5, 0.7, 0.1) | (1, 0.8, 0.8) |
z2 | (0.5, 0.6, 1) | (0.2, 0.6, 0.4) | (0.9, 0.2, 0.4) |
z3 | (1, 0.2, 0) | (0.8, 0.9, 1) | (0.6, 1, 0) |
R2 | z1 | z2 | z3 |
---|---|---|---|
z1 | (0.9, 0.2, 0.4) | (0.3, 0.9, 0.1) | (0.1, 0.7, 0) |
z2 | (0.4, 0.5, 0.1) | (0, 0.1, 0.7) | (1, 0.8, 0.8) |
z3 | (1, 0.5, 0) | (0.4, 0.4, 0.2) | (0.1, 0.5, 0.4) |
R3 | z1 | z2 | z3 |
---|---|---|---|
z1 | (0.7, 0.7, 0) | (0.4, 0.8, 0.9) | (1, 0.4, 0.5) |
z2 | (0.8, 0.2, 0.1) | (1, 0.1, 0.8) | (0.1, 0.3, 0.5) |
z3 | (0, 0.8, 1) | (1, 0, 1) | (1, 1, 0) |
R1 | y1 | y2 | y3 | y4 |
---|---|---|---|---|
z1 | (0.2, 0.3, 0.4) | (0.3, 0.5, 0.4) | (0.4, 0.6, 0.2) | (0.1, 0.3, 0.5) |
z2 | (0.8, 0.7, 0.1) | (0.2, 0.5, 0.6) | (0.6, 0.6, 0.7) | (0.4, 0.6, 0.3) |
z3 | (0.5, 0.7, 0.2) | (0.6, 0.2, 0.1) | (1, 0.9, 0.4) | (0.5, 0.4, 0.3) |
z4 | (0.4, 0.6, 0.3) | (0.5, 0.5, 0.4) | (0.3, 0.8, 0.4) | (0.2, 0.9, 0.8) |
R2 | y1 | y2 | y3 | y4 |
---|---|---|---|---|
z1 | (0.3, 0.4, 0.5) | (0.6, 0.7, 0.2) | (0.1, 0.8, 0.3) | (0.5, 0.3, 0.4) |
z2 | (0.5, 0.5, 0.4) | (1, 0, 1) | (0.8, 0.1, 0.8) | (0.7, 0.8, 0.5) |
z3 | (0.7, 0.2, 0.1) | (0.3, 0.5, 0.4) | (0.6, 0.1, 0.4) | (1, 0, 0) |
z4 | (1, 0.2, 0) | (0.8, 0.1, 0.5) | (0.1, 0.2, 0.7) | (0.2, 0.2, 0.8) |
R3 | y1 | y2 | y3 | y4 |
---|---|---|---|---|
z1 | (0.6, 0.2, 0.2) | (0.3, 0.1, 0.7) | (0, 0.2, 0.9) | (0.8, 0.3, 0.2) |
z2 | (0.1, 0.1, 0.7) | (0.2, 0.3, 0.8) | (0.7, 0.1, 0.2) | (0, 0, 1) |
z3 | (0.8, 0.4, 0.1) | (0.9, 0.5, 0.3) | (0.2, 0.1, 0.6) | (0.7, 0.2, 0.3) |
z4 | (0.6, 0.2, 0.2) | (0.2, 0.2, 0.8) | (1, 1, 0) | (0.5, 0.3, 0.1) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, C.; Zhang, X.; Shao, S.; Smarandache, F. Multi-Granulation Neutrosophic Rough Sets on a Single Domain and Dual Domains with Applications. Symmetry 2018, 10, 296. https://doi.org/10.3390/sym10070296
Bo C, Zhang X, Shao S, Smarandache F. Multi-Granulation Neutrosophic Rough Sets on a Single Domain and Dual Domains with Applications. Symmetry. 2018; 10(7):296. https://doi.org/10.3390/sym10070296
Chicago/Turabian StyleBo, Chunxin, Xiaohong Zhang, Songtao Shao, and Florentin Smarandache. 2018. "Multi-Granulation Neutrosophic Rough Sets on a Single Domain and Dual Domains with Applications" Symmetry 10, no. 7: 296. https://doi.org/10.3390/sym10070296