# Nonoscillatory Solutions to Second-Order Neutral Difference Equations

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Main Results

**Lemma**

**1.**

**Proof.**

**Remark**

**1.**

**Lemma**

**2.**

**Proof.**

**Lemma**

**3.**

**Proof.**

**Remark**

**2.**

**Lemma**

**4.**

**Proof.**

**Theorem**

**1.**

**Proof.**

**Lemma**

**5.**

**Proof.**

**Corollary**

**1.**

**Proof.**

**Corollary**

**2.**

**Proof.**

**Corollary**

**3.**

**Proof.**

**Example**

**1.**

**Theorem**

**2.**

**Proof.**

**Remark**

**3.**

**Corollary**

**4.**

**Example**

**2.**

**Corollary**

**5.**

**Example**

**3.**

**Remark**

**4.**

## 3. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Jankowski, R.; Schmeidel, E. Almost oscillation criteria for second order neutral difference equation with quasidifferences. Int. J. Differ. Equ.
**2014**, 9, 77–86. [Google Scholar] - Jiang, J. Oscillation of second order nonlinear neutral delay difference equations. Appl. Math. Comput.
**2003**, 146, 791–801. [Google Scholar] [CrossRef] - Saker, S.H. New oscillation criteria for second-order nonlinear neutral delay difference equations. Appl. Math. Comput.
**2003**, 142, 99–111. [Google Scholar] [CrossRef] - Saker, S.H. Oscillation Theory of Delay Differential and Difference Equations: Second and Third Orders; Verlag Dr. Müller: Saarbrücken, Germany, 2010. [Google Scholar]
- Schmeidel, E.; Zbaszyniak, Z. An application of Darbos fixed point theorem in the investigation of periodicity of solutions of difference equations. Appl. Math. Comput.
**2012**, 64, 2185–2191. [Google Scholar] [CrossRef] - Seghar, D.; Thandapani, E.; Pinelas, S. Oscillation theorems for second order difference equations with negative neutral term. Tamkang J. Math.
**2015**, 46, 441–451. [Google Scholar] - Thandapani, E.; Balasubramanian, V.; Graef, J.R. Oscillation criteria for second-order difference equations with neqative neutral term. Int. J. Pure Appl. Math.
**2013**, 87, 283–292. [Google Scholar] [CrossRef] - Thandapani, E.; Selvarangam, S.; Rama, R.; Madhan, M. Improved oscillation criteria for second order nonlinear delay difference equations with non-positive neutral term. Fasc. Math.
**2016**, 26, 155–165. [Google Scholar] [CrossRef] - Cheng, S.S.; Li, H.J.; Patula, W.T. Bounded and zero convergent solutions of second-order difference equations. J. Math. Anal. Appl.
**1989**, 141, 463–483. [Google Scholar] [CrossRef] - Migda, M. Asymptotic behaviour of solutions of nonlinear difference equations. Fasc. Math.
**2001**, 31, 57–63. [Google Scholar] - Řehák, P. Asymptotic formulae for solutions of linear second order difference equations. J. Differ. Equ. Appl.
**2016**, 22, 107–139. [Google Scholar] [CrossRef] - Stević, S. Asymptotic behaviour of second-order difference equations. ANZIAM J.
**2004**, 46, 157–170. [Google Scholar] [CrossRef] - Stević, S. Growth estimates for solutions of nonlinear second-order difference equations. ANZIAM J.
**2005**, 46, 439–448. [Google Scholar] [CrossRef] - Thandapani, E.; Manuel, M.M.S.; Graef, J.R.; Spikes, P.W. Monotone properties of certain classes of solutions of second-order difference equations. Comput. Math. Appl.
**1998**, 36, 291–297. [Google Scholar] [CrossRef] - Bohner, M.; Stević, S. Asymptotic behavior of second-order dynamic equations. Appl. Math. Comput.
**2007**, 188, 1503–1512. [Google Scholar] [CrossRef] - Bohner, M.; Stević, S. Linear perturbations of a nonoscillatory second-order dynamic equation. J. Differ. Equ. Appl.
**2009**, 15, 1211–1221. [Google Scholar] [CrossRef] - Higgins, R. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete Contin. Dyn. Syst. B
**2010**, 13, 609–622. [Google Scholar] [CrossRef] [Green Version] - Agarwal, R.P.; Grace, S.R.; O’Regan, D. Nonoscillatory solutions for discrete equations. Comput. Math. Appl.
**2003**, 45, 1297–1302. [Google Scholar] [CrossRef] - Liu, Z.; Xu, Y.; Kang, S.M. Global solvability for a second order nonlinear neutral delay difference equation. Comput. Math. Appl.
**2009**, 57, 587–595. [Google Scholar] [CrossRef] [Green Version] - Galewski, M.; Jankowski, R.; Nockowska-Rosiak, M.; Schmeidel, E. On the existence of bounded solutions for nonlinear second order neutral difference equations. Electron. J. Qual. Theory Differ. Equ.
**2014**, 72, 1–12. [Google Scholar] [CrossRef] - Tian, Y.; Cai, Y.; Li, T. Existence of nonoscillatory solutions to second-order nonlinear neutral difference equations. J. Nonlinear Sci. Appl.
**2015**, 8, 884–892. [Google Scholar] [CrossRef] [Green Version] - Bezubik, A.; Migda, M.; Nockowska-Rosiak, M.; Schmeidel, E. Trichotomy of nonoscillatory solutions to second-order neutral difference equation with quasi-difference. Adv. Differ. Equ.
**2015**, 2015, 192. [Google Scholar] [CrossRef] - Chatzarakis, G.E.; Diblik, J.; Miliaras, G.N.; Stavroulakis, I.P. Classification of neutral difference equations of any order with respect to the asymptotic behavior of their solutions. Appl. Math. Comput.
**2014**, 228, 77–90. [Google Scholar] [CrossRef] - Migda, J. Approximative solutions to difference equations of neutral type. Appl. Math. Comput.
**2015**, 268, 763–774. [Google Scholar] [CrossRef] - Migda, M.; Migda, J. On a class of first order nonlinear difference equations of neutral type. Math. Comput. Model.
**2004**, 40, 297–306. [Google Scholar] [CrossRef] - Zhu, Z.Q.; Wang, G.Q.; Cheng, S.S. A classification scheme for nonoscillatory solutions of a higher order neutral difference equation. Adv. Differ. Equ.
**2006**, 2006, 47654. [Google Scholar] [CrossRef] - Migda, M.; Migda, J. Asymptotic properties of solutions of second-order neutral difference equations. Nonlinear Anal.
**2005**, 63, e789–e799. [Google Scholar] [CrossRef] - Migda, J. Asymptotically polynomial solutions to difference equations of neutral type. Appl. Math. Comput.
**2016**, 279, 16–27. [Google Scholar] [CrossRef] [Green Version] - Stević, S. A note on bounded sequences satisfying linear inequalities. Indian J. Math.
**2001**, 43, 223–230. [Google Scholar] - Stević, S. Bounded solutions of a class of difference equations in Banach spaces producing controlled chaos. Chaos Solitons Fractals
**2008**, 35, 238–245. [Google Scholar] [CrossRef] - Migda, J. Asymptotically polynomial solutions of difference equations. Adv. Differ. Equ.
**2013**, 2013, 92. [Google Scholar] [CrossRef] - Thandapani, E.; Arul, R.; Raja, P.S. The asymptotic behavior of nonoscillatory solutions of nonlinear neutral type difference equations. Math. Comput. Model.
**2004**, 39, 1457–1465. [Google Scholar] [CrossRef] - Zafer, A. Oscillatory and asymptotic behavior of higher order difference equations. Math. Comput. Model.
**1995**, 21, 43–50. [Google Scholar] [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Migda, M.; Migda, J.
Nonoscillatory Solutions to Second-Order Neutral Difference Equations. *Symmetry* **2018**, *10*, 207.
https://doi.org/10.3390/sym10060207

**AMA Style**

Migda M, Migda J.
Nonoscillatory Solutions to Second-Order Neutral Difference Equations. *Symmetry*. 2018; 10(6):207.
https://doi.org/10.3390/sym10060207

**Chicago/Turabian Style**

Migda, Małgorzata, and Janusz Migda.
2018. "Nonoscillatory Solutions to Second-Order Neutral Difference Equations" *Symmetry* 10, no. 6: 207.
https://doi.org/10.3390/sym10060207