# Stability of the Non-Hyperbolic Zero Equilibrium of Two Close-to-Symmetric Systems of Difference Equations with Exponential Terms

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Stability of Zero Equilibrium of Equation (1)

**Proposition**

**1.**

**Proof.**

## 3. Stability of Zero Equilibrium of Equation (2)

**Proposition**

**2.**

**Proof.**

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Clark, D.; Kulenovic, M.R.S.; Selgrade, J.F. Global asymptotic behavior of a two-dimensional difference equation modeling competition. Nonlinear Anal.
**2003**, 52, 1765–1776. [Google Scholar] [CrossRef] - Grove, E.A.; Ladas, G.; Prokup, N.R.; Levis, R. On the global behavior of solutions of a biological model. Commun. Appl. Nonlinear Anal.
**2003**, 7, 33–46. [Google Scholar] - Kocic, V.L.; Ladas, G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- El-Metwally, E.; Grove, E.A.; Ladas, G.; Levins, R.; Radin, M. On the difference equation, x
_{n+1}= α + βx_{n−1}e^{−xn}. Nonlinear Anal.**2001**, 47, 4623–4634. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Stefanidou, G.; Papadopoulos, K.B. On a modification of a discrete epidemic model. Comput. Math. Appl.
**2010**, 59, 3559–3569. [Google Scholar] [CrossRef] - Stević, S. Asymptotic behavior of a nonlinear difference equation. Indian J. Pure Appl. Math.
**2003**, 34, 1681–1687. [Google Scholar] - Stević, S. A short proof of the Cushing-Henson conjecture. Discret. Dyn. Nat. Soc.
**2006**, 2006, 37264. [Google Scholar] [CrossRef] - Stević, S. On a discrete epidemic model. Discret. Dyn. Nat. Soc.
**2007**, 2007, 87519. [Google Scholar] [CrossRef] - Carr, J. Applications of Centre Manifold Theory; Springer: Heidelberg/Berlin, Germany, 1982. [Google Scholar]
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theory, 2nd ed.; Applied Mathematical Sciences; Springer: Heidelberg/Berlin, Germany, 1998; Volume 112. [Google Scholar]
- Berg, L.; Stević, S. On some systems of difference equations. Appl. Math. Comput.
**2011**, 218, 1713–1718. [Google Scholar] [CrossRef] - Stević, S. On some solvable systems of difference equations. Appl. Math. Comput.
**2012**, 218, 5010–5018. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Schinas, C.J. Persistence, oscillatory behavior and periodicity of the solutions of a system of two nonlinear difference equations. J. Differ. Equ. Appl.
**1998**, 4, 315–323. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Schinas, C.J. On a system of two nonlinear difference equations. J. Math. Anal. Appl.
**1998**, 219, 415–426. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Schinas, C.J. Invariants and oscillation for systems of two nonlinear difference equations. Nonlinear Anal.
**2001**, 46, 967–978. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Schinas, C.J. Oscillation and asymptotic stability of two systems of difference equations of rational form. J. Differ. Equ. Appl.
**2001**, 7, 601–617. [Google Scholar] [CrossRef] - Stević, S.; Iričanin, B.; Šmarda, Z. On a close to symmetric system of difference equations of second order. Adv. Differ. Equ.
**2015**, 2015, 264. [Google Scholar] [CrossRef] - Stević, S.; Iričanin, B.; Šmarda, Z. On a product-type system of difference equations of second order solvable in closed form. J. Inequal. Appl.
**2015**, 2015, 327. [Google Scholar] [CrossRef] - Stević, S.; Iričanin, B.; Šmarda, Z. Solvability of a close to symmetric system of difference equations. Electron. J. Differ. Equ.
**2016**, 2016, 1–13. [Google Scholar] - Papaschinopoulos, G.; Radin, M.; Schinas, C.J. On the system of two difference equations of exponential form: x
_{n+1}= a + bx_{n−1}e^{−yn}, y_{n+1}= c + dy_{n−1}e^{−xn}. Math. Comput. Model.**2011**, 54, 2969–2977. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Radin, M.; Schinas, C.J. Study of the asymptotic behavior of three systems of difference equations of exponential form. Appl. Math. Comput.
**2012**, 218, 5310–5318. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Ellina, G.; Papadopoulos, K.B. Asymptotic behavior of the positive solutions of an exponential type system of difference equations. Appl. Math. Comput.
**2014**, 245, 181–190. [Google Scholar] [CrossRef] - Papaschinopoulos, G.; Fotiades, N.; Schinas, C.J. On a system of difference equations including exponential terms. J. Differ. Equ. Appl.
**2014**, 20, 717–732. [Google Scholar] [CrossRef] - Psarros, N.; Papaschinopoulos, G.; Schinas, C.J. Semistability of two systems of difference equations using centre manifold theory. Math. Methods Appl. Sci.
**2016**, 39, 5216–5222. [Google Scholar] [CrossRef] - Stević, S. On a system of difference equations. Appl. Math. Comput.
**2011**, 218, 3372–3378. [Google Scholar] [CrossRef] - Stević, S. On the system of difference equations x
_{n}= c_{n}y_{n−3}/(a_{n}+ b_{n}y_{n−1}x_{n−2}y_{n−3}), y_{n}= γ_{n}x_{n−3}/(α_{n}+ β_{n}x_{n−1}y_{n−2}x_{n−3}). Appl. Math. Comput.**2013**, 219, 4755–4764. [Google Scholar] - Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On some solvable difference equations and systems of difference equations. Abstr. Appl. Anal.
**2012**, 2012, 541761. [Google Scholar] [CrossRef] - Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On a solvable system of rational difference equations. J. Differ. Equ. Appl.
**2014**, 20, 811–825. [Google Scholar] [CrossRef] - Elaydi, S. Discrete Chaos, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008. [Google Scholar]
- Berg, L.; Stević, S. On the asymptotics of the difference equation y
_{n}(1 + y_{n−1}⋯y_{n−k+1}) = y_{n−k}. J. Differ. Equ. Appl.**2011**, 17, 577–586. [Google Scholar] [CrossRef] - Iričanin, B.; Stević, S. Eventually constant solutions of a rational difference equation. Appl. Math. Comput.
**2009**, 215, 854–856. [Google Scholar] [CrossRef] - Kent, C.M. Convergence of solutions in a non-hyperbolic case. Nonlinear Anal.
**2001**, 47, 4651–4665. [Google Scholar] [CrossRef] - Iričanin, B.; Stević, S. Some systems of nonlinear difference equations of higher order with periodic solutions. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal.
**2006**, 13, 499–508. [Google Scholar] - Camouzis, E.; Papaschinopoulos, G. Global asymptotic behavior of positive solutions on the system of rational difference equations x
_{n+1}= 1 + $\frac{{x}_{n}}{{y}_{n-m}}$, y_{n+1}= 1 + $\frac{{y}_{n}}{{x}_{n-m}}$. Appl. Math. Lett.**2004**, 17, 733–737. [Google Scholar] [CrossRef] - Psarros, N.; Papaschinopoulos, G.; Schinas, C.J. Study of the stability of a 3 × 3 system of difference equations using Centre Manifold Theory. Appl. Math. Lett.
**2016**, 64, 185–192. [Google Scholar] [CrossRef] - Psarros, N.; Papaschinopoulos, G.; Schinas, C.J. On the stability of some systems of exponential difference equations. Opusc. Math.
**2018**, 38, 95–115. [Google Scholar] [CrossRef] - Stević, S. On a third-order system of difference equations. Appl. Math. Comput.
**2012**, 218, 7649–7654. [Google Scholar] [CrossRef] - Stević, S. On some periodic systems of max-type difference equations. Appl. Math. Comput.
**2012**, 218, 11483–11487. [Google Scholar] [CrossRef] - Stević, S. On a solvable system of difference equations of kth order. Appl. Math. Comput.
**2013**, 219, 7765–7771. [Google Scholar] [CrossRef] - Stević, S. On a cyclic system of difference equations. J. Differ. Equ. Appl.
**2014**, 20, 733–743. [Google Scholar] [CrossRef] - Stević, S. Boundedness and persistence of some cyclic-type systems of difference equations. Appl. Math. Lett.
**2016**, 56, 78–85. [Google Scholar] [CrossRef] - Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On a third-order system of difference equations with variable coefficients. Abstr. Appl. Anal.
**2012**, 2012, 508523. [Google Scholar] [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mylona, C.; Psarros, N.; Papaschinopoulos, G.; Schinas, C.
Stability of the Non-Hyperbolic Zero Equilibrium of Two Close-to-Symmetric Systems of Difference Equations with Exponential Terms. *Symmetry* **2018**, *10*, 188.
https://doi.org/10.3390/sym10060188

**AMA Style**

Mylona C, Psarros N, Papaschinopoulos G, Schinas C.
Stability of the Non-Hyperbolic Zero Equilibrium of Two Close-to-Symmetric Systems of Difference Equations with Exponential Terms. *Symmetry*. 2018; 10(6):188.
https://doi.org/10.3390/sym10060188

**Chicago/Turabian Style**

Mylona, Chrysoula, Nikolaos Psarros, Garyfalos Papaschinopoulos, and Christos Schinas.
2018. "Stability of the Non-Hyperbolic Zero Equilibrium of Two Close-to-Symmetric Systems of Difference Equations with Exponential Terms" *Symmetry* 10, no. 6: 188.
https://doi.org/10.3390/sym10060188