Symmetry Measures of Simplified Neutrosophic Sets for Multiple Attribute Decision-Making Problems
Abstract
:1. Introduction
2. Asymmetry Measures of Simplified Neutrosophic Sets
3. Normalized Symmetry Measures of Simplified Neutrosophic Sets
4. Decision-Making Method Using the Weighted Symmetry Measure
Decision-Making Method Using the Weighted Symmetry Measure
5. Decision-Making Examples
5.1. Practical Example
5.2. Comparative Example with Existing Relative Measures for Single-Valued Neutrosophic Sets
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, Australia, 2005. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
- Ye, J. Vector similarity measures of simplified neutrosophic sets and their application in multicriteria decision making. Int. J. Fuzzy Syst. 2014, 16, 204–211. [Google Scholar]
- Peng, J.J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, J.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with interval-valued neutrosophic sets. Neural Comput. Appl. 2016, 27, 615–627. [Google Scholar] [CrossRef]
- Ye, J. Another form of correlation coefficient between single valued neutrosophic sets and its multiple attribute decision-making method. Neutrosophic Sets Syst. 2013, 1, 8–12. [Google Scholar]
- Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ji, P.; Wang, J.Q.; Chen, X.H. An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision making problems. Int. J. Comput. Intell. Syst. 2015, 8, 1027–1043. [Google Scholar] [CrossRef]
- Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [Google Scholar]
- Ye, J. Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math. Model. 2014, 38, 1170–1175. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. Interval neutrosophic sets and their application in multicriteria decision making problems. Sci. World J. 2014. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making. Int. J. Fuzzy Syst. 2014, 16, 242–255. [Google Scholar]
- Zhao, A.W.; Du, J.G.; Guan, H.J. Interval valued neutrosophic sets and multi-attribute decision-making based on generalized weighted aggregation operator. J. Intell. Fuzzy Syst. 2015, 29, 2697–2706. [Google Scholar]
- Sun, H.X.; Yang, H.X.; Wu, J.Z.; Yao, O.Y. Interval neutrosophic numbers Choquet integral operator for multi-criteria decision making. J. Intell. Fuzzy Syst. 2015, 28, 2443–2455. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Wang, J.; Zhang, H.Y.; Chen, X.H. Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342–2358. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Interval neutrosophic prioritized OWA operator and its application to multiple attribute decision making. J. Syst. Sci. Complex. 2016, 29, 681–697. [Google Scholar] [CrossRef]
- Ye, J. Simplified neutrosophic harmonic averaging projection-based method for multiple attribute decision making problems. Int. J. Mach. Learn. Cybernet. 2017, 8, 981–987. [Google Scholar] [CrossRef]
- Ye, J. Projection and bidirectional projection measures of single valued neutrosophic sets and their decision-making method for mechanical design schemes. J. Exp. Theor. Artif. Intell. 2017, 29, 731–740. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neur. Comput. Appl. 2016, 27, 727–737. [Google Scholar] [CrossRef]
- Karaaslan, F.; Davvaz, B. Properties of single-valued neutrosophic graphs. J. Intell. Fuzzy Syst. 2018, 34, 57–79. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Bausys, R.; Juodagalviene, B.; Garnyte-Sapranaviciene, I. Model for residential house element and material selection by neutrosophic MULTIMOORA method. Eng. Appl. Artif. Intell. 2017, 64, 315–324. [Google Scholar] [CrossRef]
- Bausys, R.; Juodagalviene, B. Garage location selection for residential house by WASPAS-SVNS method. J. Civ. Eng. Manag. 2017, 23, 421–429. [Google Scholar] [CrossRef]
- Pouresmaeil, H.; Shivanian, E.; Khorram, E.; Fathabadi, H.S. An extended method using topsis and vikor for multiple attribute decision making with multiple decision makers and single valued neutrosophic numbers. Adv. Appl. Stat. 2017, 50, 261–292. [Google Scholar] [CrossRef]
Measure | S1 | S2 | S3 | S4 | AV | SD | Ranking Order |
---|---|---|---|---|---|---|---|
Cosw(S*, Si) | 0.9785 | 0.9685 | 0.9870 | 0.9942 | 0.9821 | 0.0096 | S4 > S3 > S1 > S2 |
Cw(S*, Si) | 0.9798 | 0.9750 | 0.9875 | 0.9929 | 0.9838 | 0.0069 | S4 > S3 > S1 > S2 |
Dw(S*, Si) | 0.9787 | 0.9696 | 0.9845 | 0.9927 | 0.9814 | 0.0084 | S4 > S3 > S1 > S2 |
Jw(S*, Si) | 0.9586 | 0.9427 | 0.9694 | 0.9857 | 0.9641 | 0.0157 | S4 > S3 > S1 > S2 |
Projws*(Si) | 0.3933 | 0.3632 | 0.3806 | 0.4158 | 0.3882 | 0.0192 | S4 > S1 > S3 > S2 |
BProjw(S*, Si) | 0.9883 | 0.9636 | 0.9728 | 0.9958 | 0.9801 | 0.0126 | S4 > S1 > S3 > S2 |
Mw(S*, Si) | 0.9452 | 0.8390 | 0.8770 | 0.9803 | 0.9104 | 0.0555 | S4 > S1 > S3 > S2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, A.; Ye, J.; Wang, B. Symmetry Measures of Simplified Neutrosophic Sets for Multiple Attribute Decision-Making Problems. Symmetry 2018, 10, 144. https://doi.org/10.3390/sym10050144
Tu A, Ye J, Wang B. Symmetry Measures of Simplified Neutrosophic Sets for Multiple Attribute Decision-Making Problems. Symmetry. 2018; 10(5):144. https://doi.org/10.3390/sym10050144
Chicago/Turabian StyleTu, Angyan, Jun Ye, and Bing Wang. 2018. "Symmetry Measures of Simplified Neutrosophic Sets for Multiple Attribute Decision-Making Problems" Symmetry 10, no. 5: 144. https://doi.org/10.3390/sym10050144