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Abstract: A simplified neutrosophic set (containing interval and single-valued neutrosophic sets) can
be used for the expression and application in indeterminate decision-making problems because three
elements in the simplified neutrosophic set (including interval and single valued neutrosophic sets)
are characterized by its truth, falsity, and indeterminacy degrees. Under a simplified neutrosophic
environment, therefore, this paper firstly defines simplified neutrosophic asymmetry measures.
Then we propose a normalized symmetry measure and a weighted symmetry measure of simplified
neutrosophic sets and develop a simplified neutrosophic multiple attribute decision-making method
based on the weighted symmetry measure. All alternatives can be ranked through the weighted
symmetry measure between the ideal solution/alternative and each alternative, and then the
best one can be determined. Finally, an illustrative example on the selection of manufacturing
schemes (alternatives) in the flexible manufacturing system demonstrates the applicability of the
proposed method in a simplified (interval and single valued) neutrosophic setting, and then the
decision-making method based on the proposed symmetry measure is in accord with the ranking
order and best choice of existing projection and bidirectional projection-based decision-making
methods and strengthens the resolution/discrimination in the decision-making process corresponding
to the comparative example.

Keywords: asymmetry measure; symmetry measure; simplified neutrosophic set; decision making

1. Introduction

To represent inconsistent and indeterminate information in the real world, Smarandache [1]
introduced the neutrosophic set (NS) concept as the extension of the fuzzy set and (interval-valued)
intuitionistic fuzzy sets. Because three function values of truth-membership, falsity-membership,
and indeterminacy-membership in NS are defined in the real standard interval [0, 1] or
nonstandard interval ]−0, 1+[, the nonstandard interval shows its difficult application in the real
world. As the subclass of NS, Ye [2] presented a simplified neutrosophic set (SNS), where its
indeterminacy-membership, truth-membership, and falsity-membership functions are in the real
standard interval [0, 1] to conveniently apply in engineering fields. SNS includes an interval
neutrosophic set (INS) [3] and a single-valued neutrosophic set (SVNS) [4]. After that, Ye [5]
introduced three simplified neutrosophic similarity measures in vector space and their multicriteria
decision-making methods. Then, outranking approaches [6,7] were used for simplified neutrosophic
and interval neutrosophic decision-making problems. Some researchers proposed correlation
coefficients, cross entropy measures, similarity measures for INSs/ SVNSs/SNSs, and their multiple
attribute decision-making (MADM) methods [8–12]. Some researchers presented various aggregation
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operators of SVNSs/INSs/SNSs for decision-making fields [13–19]. Furthermore, projection and
bidirectional projection measures of INSs and SVNSs [20,21] were introduced for their decision-making.
TOPSIS method [22] was presented for decision-making with SVNS information, also SVNS graphs [23]
were used for decision-making problems. Then, some decision making methods were presented
based on the neutrosophic MULTIMOORA, WASPAS-SVNS, and extended TOPSIS and VIKOR
methods [24–26] under SNS environments.

As mentioned above, the measure method of SNSs is an important tool in decision-making. To
develop new measures in simplified neutrosophic decision-making problems, this study proposes
asymmetry measures of SNSs and their normalized symmetry measure of SNSs for the first time,
and then develops a MADM method by using the weighted symmetry measure of SNSs. Therefore,
this paper is presented as the following frame. Some definitions of asymmetry measures of SNSs are
presented in Section 2. The normalized symmetry measure and weighted symmetry measure of SNSs
are proposed in Section 3. A MADM method using the weighted symmetry measure is developed
in Section 4. In Section 5, the practical example is provided in simplified neutrosophic environments
to show the application, along with the sensitive analysis regarding to the attribute weight values,
and then the feasibility and effectiveness are indicated by the comparative example. At last, Section 6
indicates conclusions and future work.

2. Asymmetry Measures of Simplified Neutrosophic Sets

In this section, asymmetry measures of SNSs are presented, including asymmetry measures of
SVNSs and INSs.

Ye [2] presented an SNS as a subclass of a NS [1] and gave the following definition.

Definition 1 [2]. A SNS is defined as A = {〈x, uA(x), vA(x), hA(x)〉|x ∈ U} in the universe of discourse
U, such that uA(x): U→ [0, 1], vA(x): U→ [0,1], and hA(x) : U→ [0, 1], which are described by the truth,
indeterminacy and falsity-membership degrees, satisfying 0 ≤ sup uA(x) + sup vA(x) + sup hA(x) ≤ 3 for INS
or 0 ≤ uA(x) + vA(x) + hA(x) ≤ 3 for SVNS and x ∈ U.

For convenience, an element in the SNS A is denoted by a = (ua, va, ha), which is called the
simplified neutrosophic number (SNN), including a single valued neutrosophic number (SVNN) and
an interval neutrosophic number (INN).

First, asymmetry measures of SVNSs are defined in the following.

Definition 2. Let B = {b1, b2, . . . , bn} and A = {a1, a2, . . . , an} be two SVNSs, where bj = (ubj, vbj, hbj) and
aj = (uaj, vaj, haj) are the j-th SVNNs (j = 1, 2, . . . , n) of B and A respectively. Then

PB(A) =
A · B
‖B‖2 =

n
∑

j = 1
(uajubj + vajvbj + hajhbj)

n
∑

j = 1
(u2

bj + v2
bj + h2

bj)
(1)

PA(B) =
A · B
‖A‖2 =

n
∑

j = 1
(uajubj + vajvbj + hajhbj)

n
∑

j = 1
(u2

aj + v2
aj + h2

aj)
(2)

are called asymmetry measures of B and A.

If one considers the weight of each element bj or aj (j = 1, 2, . . . , n), the weighted asymmetry
measure of SNSs can be introduced below.
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Definition 3. Let B = {b1, b2, . . . , bn} and A = {a1, a2, . . . , an} be two SVNSs, where bj = (ubj, vbj, hbj) and
aj = (uaj, vaj, haj) are the j-th SVNNs (j = 1,2, . . . , n) of B and A respectively, and let the weight of an element bj
or aj be wj, wj ∈ [0, 1], and ∑n

j = 1 wj = 1 . Then

PwB(A) =

n
∑

j = 1
w2

j (uajubj + vajvbj + hajhbj)

n
∑

j = 1
w2

j (u
2
bj + v2

bj + h2
bj)

(3)

PwA(B) =

n
∑

j = 1
w2

j (uajubj + vajvbj + hajhbj)

n
∑

j = 1
w2

j (u
2
aj + v2

aj + h2
aj)

(4)

are called the weighted asymmetry measures of B and A.

By the similar way, the two asymmetry measures of SVNSs can be further extended to the
asymmetry measures of INSs, which are given by the following definition.

Definition 4. Let B = {b1, b2, . . . , bn} and A = {a1, a2, . . . , an} be two INSs, where
bj = ([uL

bj, uU
bj], [v

L
bj, vU

bj], [h
L
bj, hU

bj]) and aj = ([uL
aj, uU

aj], [v
L
aj, vU

aj], [h
L
aj, hU

aj]) are the j-th INNs (j = 1, 2,
. . . , n) of B and A respectively. Then, two asymmetry measures of B and A are defined as

PB(A) =
A · B
‖B‖2 =

n
∑

j = 1
(uL

aju
L
bj + uU

aju
U
bj + vL

ajv
L
bj + vU

ajv
U
bj + hL

ajh
L
bj + hU

ajh
U
bj)

n
∑

j = 1
[(uL

bj)
2
+ (uU

bj)
2
+ (vL

bj)
2
+ (vU

bj)
2
+ (hL

bj)
2
+ (hU

bj)
2
]

(5)

PA(B) =
A · B
‖A‖2 =

n
∑

j = 1
(uL

aju
L
bj + uU

aju
U
bj + vL

ajv
L
bj + vU

ajv
U
bj + hL

ajh
L
bj + hU

ajh
U
bj)

n
∑

j = 1
[(uL

aj)
2
+ (uU

aj)
2
+ (vL

aj)
2
+ (vU

aj)
2
+ (hL

aj)
2
+ (hU

aj)
2
]

(6)

Similarly, if one considers the weight of each element bj or aj (j = 1, 2, . . . , n), the weighted
asymmetry measures of INSs can be introduced below.

Definition 5. Let B = {b1, b2, . . . , bn} and A = {a1, a2, . . . , an} be two INSs, where
bj = ([uL

bj, uU
bj], [v

L
bj, vU

bj], [h
L
bj, hU

bj]) and aj = ([uL
aj, uU

aj], [v
L
aj, vU

aj], [h
L
aj, hU

aj]) are the j-th INNs (j = 1, 2,
. . . , n) of B and A respectively, and let the weight of an element aj or bj be wj, wj ∈ [0, 1], and ∑n

j = 1 wj = 1.
Thus, two weighted asymmetry measures of A on B are defined as

PwB(A) =
(A · B)w

‖B‖2
w

=

n
∑

j = 1
w2

j (u
L
aju

L
bj + uU

aju
U
bj + vL

ajv
L
bj + vU

ajv
U
bj + hL

ajh
L
bj + hU

ajh
U
bj)

n
∑

j = 1
w2

j [(u
L
bj)

2
+ (uU

bj)
2
+ (vL

bj)
2
+ (vU

bj)
2
+ (hL

bj)
2
+ (hU

bj)
2
]

(7)

PwA(B) =
(A · B)w

‖A‖2
w

=

n
∑

j = 1
w2

j (u
L
aju

L
bj + uU

aju
U
bj + vL

ajv
L
bj + vU

ajv
U
bj + hL

ajh
L
bj + hU

ajh
U
bj)

n
∑

j = 1
w2

j [(u
L
aj)

2
+ (uU

aj)
2
+ (vL

aj)
2
+ (vU

aj)
2
+ (hL

aj)
2
+ (hU

aj)
2
]

(8)
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3. Normalized Symmetry Measures of Simplified Neutrosophic Sets

A normalized symmetry measure of SNSs is proposed in this section.

Definition 6. Let B = {b1, b2, . . . , bn} and A = {a1, a2, . . . , an} be two SNSs, where bj = (ubj, vbj, hbj) and
aj = (uaj, vaj, haj) are the j-th SNNs (j = 1, 2, . . . , n) of B and A respectively. Thus

M(B, A) =
1

1 +
∣∣∣∣ B·A
‖A‖2 − B·A

‖B‖2

∣∣∣∣ =
‖B‖2‖A‖2

‖B‖2‖A‖2 +
∣∣∣‖B‖2 − ‖A‖2

∣∣∣B · A (9)

is called the normalized symmetry measure between B and A, where ‖B‖ =
√

∑n
j = 1 (u

2
bj + v2

bj + h2
bj) and

‖A‖ =
√

∑n
j = 1 (u

2
aj + v2

aj + h2
aj) forSVNSsor‖B‖ =

√
∑n

j = 1 [(u
L
bj)

2
+(uU

bj)
2
+(vL

bj)
2
+(vU

bj)
2
+(hL

bj)
2
+(hU

bj)
2
]

and ‖A‖ =
√

∑n
j = 1 [(u

L
aj)

2
+ (uU

aj)
2
+ (vL

aj)
2
+ (vU

aj)
2
+ (hL

aj)
2
+ (hU

aj)
2
] for INSs are the modules of B

and A respectively, and B · A = ∑n
j = 1 (u

L
aju

L
bj + uU

aju
U
bj + vL

ajv
L
bj + vU

ajv
U
bj + hL

ajh
L
bj + hU

ajh
U
bj) is the inner

product between B and A.

Therefore, the closer the value of M(B, A) is to 1, the closer B is to A, and then there are M(B, A)
= M(A, B) = 1 if B = A, and it satisfies 0 ≤ M(B, A) ≤ 1 for any B and any A, which is a normalized
symmetry measure.

The bellowing weighted symmetry measure between SNSs can be introduced if one considers the
weight of each element bj or aj (j = 1, 2, . . . , n).

Definition 7. Let B = {b1, b2, . . . , bn} and A = {a1, a2, . . . , an} be two SNSs, where bj = (ubj, vbj, hbj) and
aj = (uaj, vaj, haj) are the j-th SNNs (j = 1, 2, . . . , n) of B and A respectively, and let the weight of an element bj
or aj be wj, wj ∈ [0, 1], and ∑n

j = 1 wj = 1. Thus

Mw(B, A) =
1

1 +
∣∣∣∣ (B·A)w
‖A‖2

w
− (B·A)w
‖B‖2

w

∣∣∣∣ =
‖B‖2

w‖A‖2
w

‖B‖2
w‖A‖2

w +
∣∣∣‖B‖2

w − ‖A‖2
w

∣∣∣(B · A)w

(10)

is known as the weighted symmetry measure of B and A, where ‖B‖w =
√

∑n
j = 1 w2

j (u
2
bj + v2

bj + h2
bj) and

‖A‖w =
√

∑n
j = 1 w2

j(u
2
aj +v2

aj +h2
aj)forSVNSsor‖B‖w =

√
∑n

j = 1 w2
j [(u

L
bj)

2
+(uU

bj)
2
+(vL

bj)
2
+(vU

bj)
2
+(hL

bj)
2
+(hU

bj)
2
]

and ‖A‖w =
√

∑n
j = 1 w2

j [(u
L
aj)

2
+ (uU

aj)
2
+ (vL

aj)
2
+ (vU

aj)
2
+ (hL

aj)
2
+ (hU

aj)
2
] for INSs are the

weighted modules of B and A, and then (B · A)w = ∑n
j = 1 w2

j (uajubj + vajvbj + hajhbj) or
(B · A)w = ∑n

j = 1 w2
j (u

L
aju

L
bj + uU

aju
U
bj + vL

ajv
L
bj + vU

ajv
U
bj + hL

ajh
L
bj + hU

ajh
U
bj) for INNs is known as the

weighted inner product of B and A.

4. Decision-Making Method Using the Weighted Symmetry Measure

In this section, the proposed weighted symmetry measure is utilized for simplified neutrosophic
MADM problems.

Set a set of alternatives as S = {S1, S2, . . . , Sm} and a set of attributes as A = {A1, A2, . . . , An} in a
MADM problem. Assume that the weight of the attribute Aj is wj, wj ∈ [0, 1], and ∑n

j = 1 wj = 1.

Decision-Making Method Using the Weighted Symmetry Measure

In SNS setting, the satisfaction evaluations of an alternative Si (i = 1, 2, . . . , m) for an attribute Aj
(j = 1, 2, . . . , n) is expressed by an SNS Si = {si1, si2, . . . , sin}, where sij = (uij, vij, hij) satisfies uij, vij, hij
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∈ [0, 1] and 0 ≤ uij + vij + hij ≤ 3 for SVNN or uij, vij, hij ⊆ [0, 1] and 0 ≤ uU
ij + vU

ij + hU
ij ≤ 3 for INN.

Thus, the decision matrix of SNSs can be established as D = (sij)m×n.
In the MADM problem, the similarity measure between the ideal solution/alternative and

an alternative can be used for determining the best one among all alternatives. By considering
s∗j = (u∗j , v∗j , h∗j ) = (max

i
(uij), min

i
(vij), min

i
(hij)) for SVNNs or s∗j = (u∗j , v∗j , h∗j ) =

([max
i

(uL
ij), max

i
(uU

ij )], [min
i
(vL

ij), min
i
(vU

ij )], [min
i
(hL

ij), min
i
(hU

ij )) for INNs (j = 1, 2, . . . , n; i = 1, 2,

. . . , m) as the ideal solution, an simplified neutrosophic ideal solution/alternative can be given
as S∗ =

{
s∗1 , s∗2 , . . . , s∗n

}
.

Then by applying Equation (10), the weighted symmetry measure between S* and Si (i = 1, 2, . . . ,
m) is yielded by

Mw(S∗, Si) =
1

1 +
∣∣∣∣ (S∗ ·Si)w
‖Si‖2

w
− (S∗ ·Si)w
‖S∗‖2

w

∣∣∣∣ =
‖Si‖2

w‖S∗‖
2
w

‖Si‖2
w‖S∗‖

2
w +

∣∣∣‖Si‖2
w − ‖S∗‖

2
w

∣∣∣(S∗ · Si)w

(11)

where ‖Si‖w =
√

∑n
j = 1 w2

j (u
2
ij + v2

ij + h2
ij), ‖S

∗‖w =
√

∑n
j = 1 w2

j (u
∗2
j + v∗2j + h∗2j ), and (Si · S∗)w =

∑n
j = 1 w2

j (uiju∗j +vijv∗j +hijh∗j ) for SVNNs or ‖Si‖w =
√

∑n
j = 1 w2

j ((u
L
ij)

2
+(uU

ij )
2
+(vL

ij)
2
+(vU

ij )
2
+(hL

ij)
2
+(hU

ij )
2
),

‖S∗‖w =
√

∑n
j = 1 w2

j ((u
L∗
j )

2
+ (uU∗

j )
2
+ (vL∗

j )
2
+ (vU∗

j )
2
+ (hL∗

j )
2
+ (hU∗

j )
2
), and (S∗ · Si)w =

∑n
j = 1 w2

j (u
L
iju

L∗
j + uU

ij uU∗
j + vL

ijv
L∗
j + vU

ij vU∗
j + hL

ijh
L∗
j + hU

ij hU∗
j ) for INNs.

Thus, the greater the value of Mw(S*, Si) is, the closer Si is to S*, and then the better the alternative
Si is.

5. Decision-Making Examples

A practical example about selecting the manufacturing schemes (alternatives) in the flexible
manufacturing system is provided in SNS (SVNS and INS) environments to show the applications of
the weighted symmetry measure-based MADM method in realistic scenarios, and then a comparative
example with existing relative measures for SVNS is given to show the feasibility and effectiveness of
the proposed method.

5.1. Practical Example

Assume that we consider a MADM problem in the flexible manufacturing system about the
selection of manufacturing schemes (alternatives). Set a set of four alternatives for the flexible
manufacturing system as S = {S1, S2, S3, S4}. They need to satisfy the three attributes: (i) A1 is
the improvement in quality; (ii) A2 is the market response; (iii) A3 is the manufacturing cost. In the
decision-making problem, the decision maker/expert specifies the weight vector of the attributes as
W = (0.36, 0.3, 0.34) corresponding to the importance of the three attributes.

Thus, the decision maker gives the satisfaction evaluation of an alternative Si (i = 1, 2, 3, 4) for an
attribute Aj (j = 1, 2, 3) by the evaluation information of SVNNs, and then single-valued neutrosophic
decision matrix can be constructed as

D =


(0.75, 0.2, 0.2) (0.7, 0.24, 0.26) (0.6, 0.2, 0.25)
(0.8, 0.1, 0.1) (0.75, 0.2, 0.3) (0.7, 0.3, 0.1)
(0.7, 0.2, 0.15) (0.8, 0.2, 0.1) (0.75, 0.25, 0.2)
(0.8, 0.1, 0.2) (0.7, 0.15, 0.2) (0.7, 0.2, 0.3)


Thus, the developed approach is used for the MADM problem.
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First, the single-valued neutrosophic ideal solution/alternative of s∗j = (u∗j , v∗j , h∗j ) =

(max
i

(uij), min
i
(vij), min

i
(hij)) for j = 1, 2, 3 and i = 1, 2, 3, 4 can be determined by

S∗ = {s∗1 , s∗2 , s∗3} = {(0.8, 0.1, 0.1), (0.8, 0.15, 0.1), (0.75, 0.2, 0.1)}

Then, according to Equation (11), the weighted symmetry measure values of S* and Si can be
obtained as follows:

Mw(S*, S1) = 0.8945, Mw(S*, S2) = 0.9964, Mw(S*, S3) = 0. 9717, and Mw(S*, S4) = 0.9730

Since the values of the weighted symmetry measure are Mw(S*, S2) > Mw(S*, S4) > Mw(S*, S3) >
Mw(S*, S1), the four alternatives are ranked as S2 > S4 > S3 > S1. Obviously, S2 is the best one among
the four alternatives.

If the fit judgments of the alternatives Si (i = 1, 2, 3, 4) for the attributes are expressed by interval
neutrosophic information, the interval neutrosophic decision matrix can be constructed as

D =


([0.7, 0.8], [0.1, 0.2], [0.15, 0.3]) ([0.7, 0.8], [0.2, 0.3], [0.1, 0.3]) ([0.6, 0.7], [0, 0.2], [0.1, 0.4])
([0.75, 0.9], [0.1, 0.2], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.2], [0.1, 0.3]) ([0.6, 0.7], [0.2, 0.3], [0.1, 0.3])
([0.6, 0.8], [0.1, 0.3], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.3], [0.1, 0.2]) ([0.7, 0.8], [0.2, 0.4], [0.1, 0.3])
([0.8, 0.9], [0.1, 0.2], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.2], [0.1, 0.3]) ([0.6, 0.8], [0.2, 0.3], [0.2, 0.4])


Then, an interval neutrosophic ideal solution/alternative of

s∗j = (u∗j , v∗j , h∗j ) = ([max
i

(uL
ij), max

i
(uU

ij )], [min
i
(vL

ij), min
i
(vU

ij )], [min
i
(hL

ij), min
i
(hU

ij )) for i = 1,

2, 3, 4 and j = 1, 2, 3 can be determined by

S∗ =
{

s∗1 , s∗2 , . . . , s∗n
}

= {([0.8, 0.9], [0.1, 0.2], [0.1, 0.2]), ([0.7, 0.8], [0.1, 0.2], [0.1, 0.2]), ([0.7, 0.8], [0, 0.2], [0.1, 0.3])}

By using Equation (11), the weighted symmetry measure values of S* and Si (i = 1, 2, 3, 4) can be
obtained as

Mw(S*, S1) = 0.9053, Mw(S*, S2) = 0.9423, Mw(S*, S3) = 0. 9401, and Mw(S*, S4) = 0.9762

Since the weighted symmetry measure values are Mw(S4, S*) > Mw(S2, S*) > Mw(S3, S*) > Mw(S1, S*),
the four alternatives are ranked as S4 > S2 > S3 > S1. Thus, S4 is the best one among the four alternatives.

In this practical example, there is little difference of ranking orders under SVNS and
INS environments.

To indicate the sensitivity of the proposed MADM method, this work only considers that the
attribute weights may affect the ranking of alternatives as the sensitive analysis because the attribute
weights are given by the decision maker’s subjective judgment/preference in this decision-making
problem. If the weights of the three attributes are not considered in this decision-making problem, the
three weight values in Equation (11) are reduced to wj = 1/n = 1/3 for j =1, 2, 3.

By using Equation (11) under a SVNS environment, the weighted symmetry measure values
between S* and Si (i = 1, 2, 3, 4) can be obtained as

Mw(S*, S1) = 0.8933, Mw(S*, S2) = 0.9987, Mw(S*, S3) = 0.9811, and Mw(S*, S4) = 0.9592

By using Equation (11) under an INS environment, the weighted symmetry measure values
between S* and Si (i = 1, 2, 3, 4) can be obtained as

Mw(S*, S1) = 0.9207, Mw(S*, S2) = 0.9482, Mw(S*, S3) = 0.9550, and Mw(S*, S4) = 0.9742

Thus, their ranking order is S4 > S3 > S2 > S1 according to the above measure values.
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Clearly, there exists a little difference of the ranking orders with the given attribute weights and
without the attribute weights under SVNS and INS environments, and then the best alternatives S2

and S4 in all ranking orders are still identical in these cases.
By the sensitive analysis regarding to the weights of the three attributes, it is obvious that the

attribute weights can affect the ranking orders of four alternatives to some extent, which show some
sensitivity to the attribute weights specified by the decision maker or expert.

5.2. Comparative Example with Existing Relative Measures for Single-Valued Neutrosophic Sets

For convenient comparison, let us adopt a MADM problem about selecting design schemes
(alternatives) of punching machine from literature [21]. In the design schemes of punching machine [21],
a set of four design schemes S = {S1, S2, S3, S4} needs to satisfy a set of the five attributes A = {A1, A2, A3,
A4, A5}, where A1, A2, A3, A4, and A5 are the manufacturing cost, structure complexity, transmission
effectiveness, reliability, and maintainability respectively. The SVNS decision matrix of evaluating the
four alternatives over the five attributes is adopted from literature [21], which is given as

D =


(0.75, 0.1, 0.4) (0.80, 0.1, 0.3) (0.85, 0.1, 0.2) (0.85, 0.1, 0.3) (0.9, 0.1, 0.2)
(0.70, 0.1, 0.5) (0.75, 0.1, 0.1) (0.75, 0.2, 0.1) (0.8, 0.1, 0.1) (0.8, 0.2, 0.3)
(0.80, 0.2, 0.3) (0.78, 0.1, 0.2) (0.80, 0.1, 0.2) (0.8, 0.2, 0.2) (0.75, 0.1, 0.3)
(0.9, 0.1, 0.2) (0.85, 0.1, 0.1) (0.9, 0.1, 0.2) (0.85, 0.1, 0.3) (0.85, 0.2, 0.3)


Then, the weight vector of the five attributes is given as W = (0.25, 0.2, 0.25, 0.15, 0.15). The ideal

solution/alternative in [21] is

S∗ = {s∗1 , s∗2 , s∗3 , s∗4 , s∗5} = {(0.9, 0.1, 0.2), (0.85, 0.1, 0.1), (0.9, 0.1, 0.1), (0.85, 0.1, 0.1), (0.9, 0.1, 0.2)}

Thus, we get the weighted symmetry measure values by Equation (11) as

Mw(S*, S1) = 0.9452, Mw(S*, S2) = 0.8390, Mw(S*, S3) = 0.8770, and Mw(S*, S4) = 0.9803.

All the measure values of both the proposed weighted symmetry measure Mw(S*, Si) and the
various measures like the cosine measures of Cosw(S*, Si) and Cw(S*, Si), the Dice measure of Dw(S*, Si),
the Jaccard measure of Jw(S*, Si), the projection measure of Projws*(Si), and the bidirectional projection
measure of BProjw(S*, Si) in the literature [21] are shown in Table 1, where the average value (AV) and
the standard deviation (SD) of Si for i = 1, 2, 3, 4 are also given.

Table 1. Various measure results and ranking orders. AV: average value; SD: standard deviation.

Measure S1 S2 S3 S4 AV SD Ranking Order

Cosw(S*, Si) 0.9785 0.9685 0.9870 0.9942 0.9821 0.0096 S4 > S3 > S1 > S2
Cw(S*, Si) 0.9798 0.9750 0.9875 0.9929 0.9838 0.0069 S4 > S3 > S1 > S2
Dw(S*, Si) 0.9787 0.9696 0.9845 0.9927 0.9814 0.0084 S4 > S3 > S1 > S2
Jw(S*, Si) 0.9586 0.9427 0.9694 0.9857 0.9641 0.0157 S4 > S3 > S1 > S2

Projws*(Si) 0.3933 0.3632 0.3806 0.4158 0.3882 0.0192 S4 > S1 > S3 > S2
BProjw(S*, Si) 0.9883 0.9636 0.9728 0.9958 0.9801 0.0126 S4 > S1 > S3 > S2

Mw(S*, Si) 0.9452 0.8390 0.8770 0.9803 0.9104 0.0555 S4 > S1 > S3 > S2

From Table 1, the ranking order based on the proposed symmetry measure is the same as the
ones of the projection and bidirectional projection measures, but indicates a little difference of other
ranking orders. However, the best one in all ranking orders is the same. It is obvious that the
proposed symmetry measure is feasible and effective. According to their standard deviations, the SD
value of the proposed symmetry measure is 0.0555, which is the biggest one among the SD values of
various measures. In the MADM process, however, the cosine, Dice, and Jaccard measures indicate
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smaller SD values, which show lower resolution/discrimination; while the MADM methods using the
projection and bidirectional projection measures also imply low resolution/discrimination due to their
small SD values. Obviously, the new MADM method can strengthen the resolution/discrimination
in the MADM process of the four alternatives so as to provide effective decision information for
decision makers.

6. Conclusions

This paper firstly defined asymmetry measure of SNSs (SVNSs and INSs), and then developed
the normalized symmetry measure and weighted symmetry measure of SNSs (SVNSs and INSs) and
their MADM method with SNS information (interval and single valued neutrosophic information).
Then the ranking of all alternatives and the best one can be given through the weighted symmetry
measure between the ideal solution/alternative and each alternative. Finally, a practical example
demonstrated the applications of the developed method for selecting the manufacturing schemes
(alternatives) in the flexible manufacturing system under single-valued and interval neutrosophic
environments, along with the sensitive analysis regarding to the attribute weights, and then the
feasibility and effectiveness of the proposed method were indicated by the comparative example in
single-valued neutrosophic setting.

Since the MADM method proposed in this study contains the biggest standard deviations
among these existing related MADM methods, the higher resolution/discrimination given in the
decision-making process is its main advantage. However, this study only proposes the simplified
neutrosophic symmetry measure and its MADM method with the given (subjective) attribute
weights for the first time, but it cannot handle simplified neutrosophic group decision-making
problems. Therefore, in the future this study will be extended to simplified neutrosophic or simplified
neutrosophic cubic group decision-making problems with given/unknown weights.

Author Contributions: Angyan Tu proposed the asymmetry and symmetry measures of SNSs and their MADM
method; Bing Wang and Jun Ye presented the decision-making example and comparative analysis; we wrote this
paper together.
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