# An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision-Making

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- SO: The good use of opportunities through existing strengths.
- ST: The good use of strengths to eliminate or reduce the impact of threats.
- WO: Taking into account weaknesses to obtain the benefits of opportunities.
- WT: Seeking to reduce the impact of threats by considering weaknesses.

## 2. Literature Review

## 3. Definition of a Neutrosophic Set

**Definition**

**1.**

^{−}0, 1

^{+}], ${I}_{Ne}\left(x\right)$:X→[

^{−}0, 1

^{+}] and ${F}_{Ne}\left(x\right)$:X→[

^{−}0, 1

^{+}]. There is no restriction on the sum of ${T}_{Ne}$($x$), ${I}_{Ne}\left(x\right)$ and ${F}_{Ne}\left(x\right)$, so 0

^{−}≤ sup ${T}_{Ne}\left(x\right)$ + sup ${I}_{Ne}\left(x\right)$ + sup ${F}_{Ne}\left(x\right)$ ≤ 3

^{+}.

**Definition**

**2.**

**Definition**

**3.**

**Definition**

**4.**

- Addition of two triangular neutrosophic numbers$$\tilde{a}+\tilde{b}=\langle \left({a}_{1}+{b}_{1},{a}_{2}+{b}_{2},{a}_{3}+{b}_{3}\right);{\alpha}_{\tilde{a}}\wedge {\alpha}_{\tilde{b}},\text{}{\theta}_{\tilde{a}}\vee {\theta}_{\tilde{b}},{\beta}_{\tilde{a}}\vee {\beta}_{\tilde{b}}\rangle $$
- Subtraction of two triangular neutrosophic numbers$$\tilde{a}-\text{}\tilde{b}=\langle \left({a}_{1}-{b}_{3},{a}_{2}-{b}_{2\text{}},{a}_{3}-{b}_{1}\right);{\alpha}_{\tilde{a}}\wedge {\alpha}_{\tilde{b}},\text{}{\theta}_{\tilde{a}}\vee {\theta}_{\tilde{b}},{\beta}_{\tilde{a}}\vee {\beta}_{\tilde{b}}\rangle $$
- Inverse of a triangular neutrosophic number$${\tilde{a}}^{-1}=\langle \left(\frac{1}{{a}_{3}},\frac{1}{{a}_{2}},\frac{1}{{a}_{1}}\right);{\alpha}_{\tilde{a}},{\theta}_{\tilde{a}},{\beta}_{\tilde{a}}\rangle ,\text{}\mathrm{where}\text{}\left(\tilde{a}\ne 0\right)$$
- Multiplication of a triangular neutrosophic number by a constant value$$\mathsf{\gamma}\tilde{a}=\{\begin{array}{l}\langle \left(\gamma {a}_{1},\gamma {a}_{2},\gamma {a}_{3}\right);{\alpha}_{\tilde{a}},{\theta}_{\tilde{a}},{\beta}_{\tilde{a}}\rangle if(\gamma 0)\\ \langle \left(\gamma {a}_{3},\gamma {a}_{2},\gamma {a}_{1}\right);{\alpha}_{\tilde{a}},{\theta}_{\tilde{a}},{\beta}_{\tilde{a}}\rangle if\left(\gamma 0\right)\end{array}$$
- Division of a triangular neutrosophic number by a constant value$$\frac{\tilde{a}}{\gamma}=\{\begin{array}{c}\langle \left(\frac{{a}_{1}}{\gamma},\frac{{a}_{2}}{\gamma},\frac{{a}_{3}}{\gamma}\right);{\alpha}_{\tilde{a}},{\theta}_{\tilde{a}},{\beta}_{\tilde{a}}\rangle if(\gamma 0)\\ \langle \left(\frac{{a}_{3}}{\gamma},\frac{{a}_{2}}{\gamma},\frac{{a}_{1}}{\gamma}\right);{\alpha}_{\tilde{a}},{\theta}_{\tilde{a}},{\beta}_{\tilde{a}}\rangle if\left(\gamma 0\right)\end{array}$$
- Division of two triangular neutrosophic numbers$$\frac{\tilde{a}}{\tilde{b}}=\{\begin{array}{l}\langle \left(\frac{{a}_{1}}{{b}_{3}},\frac{{a}_{2}}{{b}_{2}},\frac{{a}_{3}}{{b}_{1}}\right);{\alpha}_{\tilde{a}}\wedge {\alpha}_{\tilde{b}},{\theta}_{\tilde{a}}\vee {\theta}_{\tilde{b}},{\beta}_{\tilde{a}}\vee {\beta}_{\tilde{b}}\rangle if\left({a}_{3}0,{b}_{3}0\right)\\ \langle \left(\frac{{a}_{3}}{{b}_{3}},\frac{{a}_{2}}{{b}_{2}},\frac{{a}_{1}}{{b}_{1}}\right);{\alpha}_{\tilde{a}}\wedge {\alpha}_{\tilde{b}},{\theta}_{\tilde{a}}\vee {\theta}_{\tilde{b}},{\beta}_{\tilde{a}}\vee {\beta}_{\tilde{b}}\rangle if\left({a}_{3}0,{b}_{3}0\right)\\ \langle \left(\frac{{a}_{3}}{{b}_{1}},\frac{{a}_{2}}{{b}_{2}},\frac{{a}_{1}}{{b}_{3}}\right);{\alpha}_{\tilde{a}}\wedge {\alpha}_{\tilde{b}},{\theta}_{\tilde{a}}\vee {\theta}_{\tilde{b}},{\beta}_{\tilde{a}}\vee {\beta}_{\tilde{b}}\rangle if\left({a}_{3}0,{b}_{3}0\right)\end{array}$$
- Multiplication of two triangular neutrosophic numbers$$\tilde{a}\tilde{b}=\{\begin{array}{l}\langle \left({a}_{1}{b}_{1},{a}_{2}{b}_{2},{a}_{3}{b}_{3}\right);{\alpha}_{\tilde{a}}\wedge {\alpha}_{\tilde{b}},{\theta}_{\tilde{a}}\vee {\theta}_{\tilde{b}},{\beta}_{\tilde{a}}\vee {\beta}_{\tilde{b}}\rangle if\left({a}_{3}0,{b}_{3}0\right)\\ \langle \left({a}_{1}{b}_{3},{a}_{2}{b}_{2},{a}_{3}{b}_{1}\right);{\alpha}_{\tilde{a}}\wedge {\alpha}_{\tilde{b}},{\theta}_{\tilde{a}}\vee {\theta}_{\tilde{b}},{\beta}_{\tilde{a}}\vee {\beta}_{\tilde{b}}\rangle if\left({a}_{3}0,{b}_{3}0\right)\\ \langle \left({a}_{3}{b}_{3},{a}_{2}{b}_{2},{a}_{1}{b}_{1}\right);{\alpha}_{\tilde{a}}\wedge {\alpha}_{\tilde{b}},{\theta}_{\tilde{a}}\vee {\theta}_{\tilde{b}},{\beta}_{\tilde{a}}\vee {\beta}_{\tilde{b}}\rangle if\left({a}_{3}0,{b}_{3}0\right)\end{array}$$

## 4. Neutrosophic AHP (N-AHP) in SWOT Analysis

- Step 1
- Select a group of experts at performing SWOT analysis.

- Step 2
- Structure the hierarchy of the problem.

- The first level is the goal the organization wants to achieve.
- The second level consists of the four strategic criteria that are defined by the SWOT analysis (i.e., criteria).
- The third level are the factors that are included in each strategic factor of the previous level (i.e., sub-criteria).
- The final level includes the strategies that should be evaluated and compared.

- Step 3
- Structure the neutrosophic pair-wise comparison matrix of factors, sub-factors and strategies, through the linguistic terms which are shown in Table 1.

- Step 4
- Check the consistency of experts’ judgments.

- Step 5
- Calculate the weight of the factors (S, W, O, T), sub-factors $\left\{\left({S}_{1},\dots ,{S}_{\mathrm{n}}\right),\text{}\left({W}_{1},\dots ,{W}_{\mathrm{n}}\right),\text{}\left({O}_{1},\dots ,{O}_{\mathrm{n}}\right),\left({T}_{1},\dots ,{T}_{\mathrm{n}}\right)\right\}$ and strategies/alternatives (Alt
_{1},…,Alt_{n}) from the neutrosophic pair-wise comparison matrix, by transforming it to a deterministic matrix using the following equations.

- Normalize the column entries by dividing each entry by the sum of the column.
- Take the total of the row averages.

- Step 6
- Calculate the total priority of each strategy (alternative) for the final ranking of all strategies using Equation (10).

## 5. Illustrative Example

- ❖
- SO strategies
- Amplifying global stores
- Seeking higher growth markets

- ❖
- WO strategies
- Adding different forms, new categories and diverse channels of products
- Trying to minimize the coffee price

- ❖
- ST strategies
- Taking precautions to mitigate economic crises and maintain profitability

- ❖
- WT strategies
- Competing with other companies by offering different coffee and creating brand loyalty
- Diversifying stores around the world and minimizing raw materials prices

- Step 1
- Perform SWOT analysis.

- Step 2
- Structure the hierarchy of the problem.

- Step 3

- Step 4
- Check the consistency of experts’ judgments.

- Step 5
- Calculate the weight of the factors, sub-factors and strategies.

_{1}= $\left[\begin{array}{c}0.4\\ 0.1\\ 0.3\\ 0.2\end{array}\right]$

_{2}= $\left[\begin{array}{c}0.4\\ 0.3\\ 0.2\\ 0.1\end{array}\right]$

_{3}= $\left[\begin{array}{c}0.5\\ 0.3\\ 0.1\\ 0.1\end{array}\right]$

_{4}= $\left[\begin{array}{c}0.3\\ 0.2\\ 0.4\\ 0.1\end{array}\right]$

_{1}= $\left[\begin{array}{c}0.2\\ 0.2\\ 0.3\\ 0.3\end{array}\right]$

_{2}= $\left[\begin{array}{c}0.4\\ 0.1\\ 0.3\\ 0.2\end{array}\right]$

_{3}= $\left[\begin{array}{c}0.6\\ 0.1\\ 0.2\\ 0.1\end{array}\right]$

_{1}= $\left[\begin{array}{c}0.1\\ 0.4\\ 0.2\\ 0.3\end{array}\right]$

_{2}= $\left[\begin{array}{c}0.1\\ 0.4\\ 0.2\\ 0.3\end{array}\right]$

_{3}= $\left[\begin{array}{c}0.3\\ 0.2\\ 0.3\\ 0.2\end{array}\right]$

_{1}= $\left[\begin{array}{c}0.1\\ 0.4\\ 0.2\\ 0.3\end{array}\right]$

_{2}= $\left[\begin{array}{c}0.6\\ 0.2\\ 0.1\\ 0.1\end{array}\right]$

_{3}= $\left[\begin{array}{c}0.5\\ 0.1\\ 0.2\\ 0.2\end{array}\right]$

- Step 6
- Determine the total priority of each strategy (alternative) and define the final ranking of all strategies using Equation (10).

- The authors in [18,19,20,21] combined the AHP with SWOT analysis to solve the drawbacks of SWOT analysis, as illustrated in the introduction section, but in the comparison matrices of the AHP they used crisp values, which were not accurate due to the vague and uncertain information of decision makers.
- In order to solve the drawbacks of classical AHP, several researchers combined SWOT analysis with the fuzzy AHP [24,25,26]. Since fuzzy sets consider only the truth degree and fail to deal with the indeterminacy and falsity degrees, it also does not offer the best representation of vague and uncertain information.
- Since neutrosophic sets consider truth, indeterminacy and falsity degrees altogether, it is the best representation for the vague and uncertain information that exists in the real world. We were the first to integrate the neutrosophic AHP with SWOT analysis. In addition, our model considered all aspects of vague and uncertain information by creating a triangular neutrosophic scale for comparing factors and strategies. Due to its versatility, this method can be applied to various problems across different fields.

## 6. Conclusions and Future Works

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Appendix A

- What is your specialty?
- How many years of experience in coffee industry you have?
- What are in your opinion the strengths of the Starbucks Company?
- What are in your opinion the weaknesses of the Starbucks Company?
- What are in your opinion the opportunities of the Starbucks Company?
- What are in your opinion the threats of the Starbucks Company?
- Please use the triangular neutrosophic scale introduced in Table 1 to compare all factors and present your answers in a table format.
- Please use the triangular neutrosophic scale introduced in Table 1 to compare all strategies and present your answers in a table format.
- In your opinion, which strategy from below will achieve the Starbucks goals:
- ⚪
- SO, A strategic plan involving a good use of opportunities through existing strengths.
- ⚪
- ST, A good use of strengths to remove or reduce the impact of threats.
- ⚪
- WO, Taking into accounts weaknesses to gain benefit from opportunities.
- ⚪
- WT, Reducing threats by becoming aware of weaknesses.

## References

- Killen, C.P.; Walker, M.; Hunt, R.A. Strategic planning using QFD. Int. J. Qual. Reliab. Manag.
**2005**, 22, 17–29. [Google Scholar] [CrossRef] - Saaty, T.L. What is the analytic hierarchy process? In Mathematical Models for Decision Supported; Springer: Berlin, Germany, 1988; pp. 109–121. [Google Scholar]
- Saaty, T.L. Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks; RWS: Chalfont St Peter, UK, 2005. [Google Scholar]
- Taghavifard, M.T.; Amoozad Mahdiraji, H.; Alibakhshi, A.M.; Zavadskas, E.K.; Bausys, R. An Extension of Fuzzy SWOT Analysis: An Application to Information Technology. Information
**2018**, 9, 46. [Google Scholar] [CrossRef] - Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst.
**1986**, 20, 87–96. [Google Scholar] [CrossRef] - Abdel-Basset, M.; Mohamed, M.; Chang, V. NMCDA: A framework for evaluating cloud computing services. Future Gener. Comput. Syst.
**2018**, 86, 12–29. [Google Scholar] [CrossRef] - Arslan, O.; Er, I.D. SWOT analysis for safer carriage of bulk liquid chemicals in tankers. J. Hazard. Mater.
**2008**, 154, 901–913. [Google Scholar] [CrossRef] [PubMed] - Helms, M.M.; Nixon, J. Exploring SWOT analysis—Where are we now? A review of academic research from the last decade. J. Strategy Manag.
**2010**, 3, 215–251. [Google Scholar] [CrossRef] - Kotler, P. Marketing Management, Analysis, Planning, Implementation, and Control, Philip Kotler; Prentice-Hall International: London, UK, 1994. [Google Scholar]
- Wheelen, T.L.; Hunger, J.D. Strategic Management and Business Policy; Addison-Wesley: Boston, MA, USA, 1986. [Google Scholar]
- Kajanus, M.; Leskinen, P.; Kurttila, M.; Kangas, J. Making use of MCDS methods in SWOT analysis—Lessons learnt in strategic natural resources management. For. Policy Econ.
**2012**, 20, 1–9. [Google Scholar] [CrossRef] - Dyson, R.G. Strategic development and SWOT analysis at the University of Warwick. Eur. J. Oper. Res.
**2004**, 152, 631–640. [Google Scholar] [CrossRef] - Chang, L.; Lin, C. The exploratory study of competitive advantage of Hsin-Chu city government by using diamond theory. Bus. Rev.
**2005**, 3, 180–185. [Google Scholar] - Khatri, J.K.; Metri, B. SWOT-AHP approach for sustainable manufacturing strategy selection: A case of Indian SME. Glob. Bus. Rev.
**2016**, 17, 1211–1226. [Google Scholar] [CrossRef] - Mehta, A.; Armenakis, A.; Mehta, N.; Irani, F. Challenges and opportunities of business process outsourcing in India. J. Lab. Res.
**2006**, 27, 323–338. [Google Scholar] [CrossRef] - Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res.
**2006**, 169, 1–29. [Google Scholar] [CrossRef] - Akyuz, E.; Celik, M. A hybrid decision-making approach to measure effectiveness of safety management system implementations on-board ships. Saf. Sci.
**2014**, 68, 169–179. [Google Scholar] [CrossRef] - Leskinen, L.A.; Leskinen, P.; Kurttila, M.; Kangas, J.; Kajanus, M. Adapting modern strategic decision support tools in the participatory strategy process—A case study of a forest research station. For. Policy Econ.
**2006**, 8, 267–278. [Google Scholar] [CrossRef] - Pesonen, M.; Kurttila, M.; Kangas, J.; Kajanus, M.; Heinonen, P. Assessing the priorities using A’WOT among resource management strategies at the Finnish Forest and Park Service. For. Sci.
**2001**, 47, 534–541. [Google Scholar] - Masozera, M.K.; Alavalapati, J.R.; Jacobson, S.K.; Shrestha, R.K. Assessing the suitability of community-based management for the Nyungwe Forest Reserve, Rwanda. For. Policy Econ.
**2006**, 8, 206–216. [Google Scholar] [CrossRef] - Shrestha, R.K.; Alavalapati, J.R.; Kalmbacher, R.S. Exploring the potential for silvopasture adoption in south-central Florida: An application of SWOT–AHP method. Agric. Syst.
**2004**, 81, 185–199. [Google Scholar] [CrossRef] - Stewart, R.A.; Mohamed, S.; Daet, R. Strategic implementation of IT/IS projects in construction: A case study. Autom. Constr.
**2002**, 11, 681–694. [Google Scholar] [CrossRef] - Chan, P.S.; Heide, D. Information technology and the new environment: Developing and sustaining competitive advantage. SAM Adv. Manag. J.
**1992**, 57, 4. [Google Scholar] - Demirtas, N.; Tuzkaya, U.R.; Seker, S. Project Management Methodology Selection Using SWOT-Fuzzy AHP. In Proceedings of the World Congress on Engineering, London, UK, 2–4 July 2014. [Google Scholar]
- Lumaksono, H. Implementation of SWOT-FAHP method to determine the best strategy on development of traditional shipyard in Sumenep. Acad. Res. Int.
**2014**, 5, 56. [Google Scholar] - Tavana, M.; Zareinejad, M.; Di Caprio, D.; Kaviani, M.A. An integrated intuitionistic fuzzy AHP and SWOT method for outsourcing reverse logistics. Appl. Soft Comput.
**2016**, 40, 544–557. [Google Scholar] [CrossRef] - Zhang, C.; Li, D.; Sangaiah, A.K.; Broumi, S. Merger and Acquisition Target Selection Based on Interval NeutrosophicMulti-granulation Rough Sets over Two Universes. Symmetry
**2017**, 9, 126. [Google Scholar] [CrossRef] - Goyal, R.K.; Kaushal, S.; Sangaiah, A.K. The utility based non-linear fuzzy AHP optimization model for network selection in heterogeneous wireless networks. Appl. Soft Comput.
**2017**. [Google Scholar] [CrossRef] - Abdel-Basset, M.; Mohamed, M.; Hussien, A.N.; Sangaiah, A.K. A novel group decision-making model based on triangular neutrosophic numbers. Soft Comput.
**2017**, 1–15. [Google Scholar] [CrossRef] - Wang, L.; Wang, Y.; Sangaiah, A.K.; Liao, B. Intuitionistic linguistic group decision-making methods based on generalized compensative weighted averaging aggregation operators. Soft Comput.
**2017**, 1–13. [Google Scholar] [CrossRef] - Abdel-Basset, M.; Mohamed, M.; Sangaiah, A.K. Neutrosophic AHP-Delphi Group decision-making model based on trapezoidal neutrosophic numbers. J. Ambient Intell. Humaniz. Comput.
**2017**, 1–17. [Google Scholar] [CrossRef] - Chan, F.T.; Chan, H.K.; Lau, H.C.; Ip, R.W. An AHP approach in benchmarking logistics performance of the postal industry. Benchmarking
**2006**, 13, 636–661. [Google Scholar] [CrossRef] - Gallego Lupiáñez, F. Interval neutrosophic sets and topology. Kybernetes
**2009**, 38, 621–624. [Google Scholar] [CrossRef] - Abdel-Basset, M.; Mohamed, M. The role of single valued neutrosophic sets and rough sets in smart city: imperfect and incomplete information systems. Measurement
**2018**, 124, 47–55. [Google Scholar] [CrossRef] - El-Hefenawy, N.; Metwally, M.A.; Ahmed, Z.M.; El-Henawy, I.M. A review on the applications of neutrosophic sets. J. Comput. Theor. Nanosci.
**2016**, 13, 936–944. [Google Scholar] [CrossRef] - Deli, I.; Subas, Y. Single valued neutrosophic numbers and their applications to multicriteria decision making problem. Neutrosophic Sets Syst.
**2014**, 2, 1–3. [Google Scholar] - Abdel-Baset, M.; Hezam, I.M.; Smarandache, F. Neutrosophic goal programming. Neutrosophic Sets Syst.
**2016**, 11, 112–118. [Google Scholar] - Buckley, J.J. Fuzzy hierarchical analysis. Fuzzy Sets Syst.
**1985**, 17, 233–247. [Google Scholar] [CrossRef] - Li, X.; Zhang, X.; Choonkil, P. Generalized Interval Neutrosophic Choquet Aggregation Operators and Their Applications. Symmetry
**2018**, 10, 85. [Google Scholar] [CrossRef] - Li, X.; Zhang, X. Single-Valued Neutrosophic Hesitant Fuzzy Choquet Aggregation Operators for Multi-Attribute Decision Making. Symmetry
**2018**, 10, 50. [Google Scholar] [CrossRef] - Zhang, X.; Florentin, S.; Liang, X. Neutrosophic Duplet Semi-Group and Cancellable Neutrosophic Triplet Groups. Symmetry
**2017**, 9, 275. [Google Scholar] [CrossRef] - Guan, H.; Guan, S.; Zhao, A. Forecasting model based on neutrosophic logical relationship and Jaccard similarity. Symmetry
**2017**, 9, 191. [Google Scholar] [CrossRef] - Chen, J.; Ye, J.; Du, S. Vector similarity measures between refined simplified neutrosophic sets and their multiple attribute decision-making method. Symmetry
**2017**, 9, 153. [Google Scholar] [CrossRef] - Liang, W.; Zhao, G.; Wu, H. Evaluating investment risks of metallic mines using an extended TOPSIS method with linguistic neutrosophic numbers. Symmetry
**2017**, 9, 149. [Google Scholar] [CrossRef] - Jiang, W.; Shou, Y. A Novel Single-Valued Neutrosophic Set Similarity Measure and Its Application in Multicriteria Decision-Making. Symmetry
**2017**, 9, 127. [Google Scholar] [CrossRef] - Fang, Z.; Ye, J. Multiple attribute group decision-making method based on linguistic neutrosophic numbers. Symmetry
**2017**, 9, 111. [Google Scholar] [CrossRef] - Ye, J. Multiple attribute decision-making method using correlation coefficients of normal neutrosophic sets. Symmetry
**2017**, 9, 80. [Google Scholar] [CrossRef] - Guo, Z.-L.; Liu, Y.-L.; Yang, H.-L. A Novel Rough Set Model in Generalized Single Valued Neutrosophic Approximation Spaces and Its Application. Symmetry
**2017**, 9, 119. [Google Scholar] [CrossRef]

Saaty Scale | Explanation | Neutrosophic Triangular Scale |
---|---|---|

1 | Equally influential | $\tilde{1}=\langle (1,1,1);0.50,0.50,\text{}0.50\rangle $ |

3 | Slightly influential | $\tilde{3}=\langle (2,3,4);0.30,0.75,\text{}0.70\rangle $ |

5 | Strongly influential | $\tilde{5}=\langle (4,5,6);0.80,0.15,\text{}0.20\rangle $ |

7 | Very strongly influential | $\tilde{7}=\langle (6,7,8);0.90,0.10,\text{}0.10\rangle $ |

9 | Absolutely influential | $\tilde{9}=\langle (9,9,9);1.00,0.00,\text{}0.00\rangle $ |

2 | Sporadic values between two close scales | $\tilde{2}=\langle (1,2,3);0.40,0.65,\text{}0.60\rangle $ |

4 | $\tilde{4}=\langle (3,4,5);0.60,0.35,\text{}0.40\rangle $ | |

6 | $\tilde{6}=\langle (5,6,7);0.70,0.25,\text{}0.30\rangle $ | |

8 | $\tilde{8}=\langle (7,8,9);0.85,0.10,\text{}0.15\rangle $ |

Factors | Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|---|

Strengths | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (4,5,6);0.80,0.15,0.20\rangle $ | $\langle (6,7,8);0.90,0.10,0.10\rangle $ |

Weaknesses | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (4,5,6);0.80,0.15,0.20\rangle $ | $\langle (6,7,8);0.90,0.10,0.10\rangle $ |

Opportunities | $\langle (\frac{1}{6},\frac{1}{5},\frac{1}{4});0.80,0.15,0.20\rangle $ | $\langle (\frac{1}{6},\frac{1}{5},\frac{1}{4});0.80,0.15,0.20\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (\frac{1}{4},\frac{1}{3},\frac{1}{2});0.30,0.75,0.70\rangle $ |

Threats | $\langle (\frac{1}{8},\frac{1}{7},\frac{1}{6});0.90,0.10,0.10\rangle $ | $\langle (\frac{1}{8},\frac{1}{7},\frac{1}{6});0.90,0.10,0.10\rangle $ | $\langle (2,3,4);0.30,0.75,0.70\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ |

Factors | Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|---|

Strengths | 1 | $1$ | $4$ | $7$ |

Weaknesses | $1$ | 1 | $4$ | $7$ |

Opportunities | $\frac{1}{4}$ | $\frac{1}{4}$ | $1$ | $1$ |

Threats | $\frac{1}{7}$ | $\frac{1}{7}$ | $1$ | $1$ |

Factors | Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|---|

Strengths | 0.4 | 0.4 | $0.4$ | 0.44 |

Weaknesses | 0.4 | 0.4 | $0.4$ | 0.44 |

Opportunities | 0.1 | 0.1 | 0.1 | 0.06 |

Threats | 0.06 | 0.06 | 0.1 | 0.06 |

Strengths | S_{1} | S_{2} | S_{3} | S_{4} |
---|---|---|---|---|

S_{1} | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (4,5,6);0.80,0.15,0.20\rangle $ | $\langle (2,3,4);0.30,0.75,0.70\rangle $ | $\langle (2,3,4);0.30,0.75,0.70\rangle $ |

S_{2} | $\langle (\frac{1}{6},\frac{1}{5},\frac{1}{4});0.80,0.15,0.20\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (\frac{1}{6},\frac{1}{5},\frac{1}{4});0.80,0.15,0.20\rangle $ | $\langle (2,3,4);0.30,0.75,0.70\rangle $ |

S_{3} | $\langle (\frac{1}{4},\frac{1}{3},\frac{1}{2});0.30,0.75,0.70\rangle $ | $\langle (4,5,6);0.80,0.15,0.20\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (2,3,4);0.30,0.75,0.70\rangle $ |

S_{4} | $\langle (\frac{1}{4},\frac{1}{3},\frac{1}{2});0.30,0.75,0.70\rangle $ | $\langle (\frac{1}{4},\frac{1}{3},\frac{1}{2});0.30,0.75,0.70\rangle $ | $\langle (\frac{1}{4},\frac{1}{3},\frac{1}{2});0.30,0.75,0.70\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ |

Strengths | S_{1} | S_{2} | S_{3} | S_{4} |
---|---|---|---|---|

S_{1} | 1 | $3$ | $1$ | $1$ |

S_{2} | $\frac{1}{3}$ | $1$ | $\frac{1}{4}$ | $1$ |

S_{3} | $1$ | $4$ | $1$ | $1$ |

S_{4} | $1$ | $1$ | $1$ | $1$ |

Strengths | S_{1} | S_{2} | S_{3} | S_{4} |
---|---|---|---|---|

S_{1} | 0.3 | 0.3 | 0.3 | $0.25$ |

S_{2} | $0.1$ | $0.1$ | $0.1$ | $0.25$ |

S_{3} | 0.3 | $0.4$ | 0.3 | $0.25$ |

S_{4} | 0.3 | $0.1$ | 0.3 | $0.25$ |

Weaknesses | W_{1} | W_{2} | W_{3} |
---|---|---|---|

W_{1} | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (\frac{1}{6},\frac{1}{5},\frac{1}{4});0.80,0.15,0.20\rangle $ | $\langle (\frac{1}{4},\frac{1}{3},\frac{1}{2});0.30,0.75,0.70\rangle $ |

W_{2} | $\langle (4,5,6);0.80,0.15,0.20\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (4,5,6);0.80,0.15,0.20\rangle $ |

W_{3} | $\langle (2,3,4);0.30,0.75,0.70\rangle $ | $\langle (\frac{1}{6},\frac{1}{5},\frac{1}{4});0.80,0.15,0.20\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ |

Weaknesses | W_{1} | W_{2} | W_{3} |
---|---|---|---|

W_{1} | $1$ | $\frac{1}{4}$ | $1$ |

W_{2} | $4$ | $1$ | $4$ |

W_{3} | $1$ | $\frac{1}{4}$ | $1$ |

Weaknesses | W_{1} | W_{2} | W_{3} |
---|---|---|---|

W_{1} | $0.2$ | $0.2$ | $0.2$ |

W_{2} | $0.7$ | $0.7$ | $0.7$ |

W_{3} | $0.2$ | $0.2$ | $0.2$ |

Opportunities | O_{1} | O_{2} | O_{3} |
---|---|---|---|

O_{1} | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (\frac{1}{4},\frac{1}{3},\frac{1}{2});0.30,0.75,0.70\rangle $ | $\langle (\frac{1}{6},\frac{1}{5},\frac{1}{4});0.80,0.15,0.20\rangle $ |

O_{2} | $\langle (2,3,4);0.30,0.75,0.70\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (\frac{1}{4},\frac{1}{3},\frac{1}{2});0.30,0.75,0.70\rangle $ |

O_{3} | $\langle (4,5,6);0.80,0.15,0.20\rangle $ | $\langle (2,3,4);0.30,0.75,0.70\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ |

Opportunities | O_{1} | O_{2} | O_{3} |
---|---|---|---|

O_{1} | $1$ | 1 | $\frac{1}{4}$ |

O_{2} | $1$ | $1$ | $1$ |

O_{3} | $4$ | $1$ | $1$ |

Opportunities | O_{1} | O_{2} | O_{3} |
---|---|---|---|

O_{1} | $0.2$ | $0.3$ | $0.1$ |

O_{2} | $0.2$ | $0.3$ | $0.4$ |

O_{3} | $0.7$ | $0.3$ | $0.4$ |

Threats | T_{1} | T_{2} | T_{3} |
---|---|---|---|

T_{1} | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (2,3,4);0.30,0.75,0.70\rangle $ | $\langle (4,5,6);0.80,0.15,0.20\rangle $ |

T_{2} | $\langle (\frac{1}{4},\frac{1}{3},\frac{1}{2});0.30,0.75,0.70\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ | $\langle (\frac{1}{4},\frac{1}{3},\frac{1}{2});0.30,0.75,0.70\rangle $ |

T_{3} | $\langle (\frac{1}{6},\frac{1}{5},\frac{1}{4});0.80,0.15,0.20\rangle $ | $\langle (2,3,4);0.30,0.75,0.70\rangle $ | $\langle (1,1,1);0.50,\text{}0.50,\text{}0.50\rangle $ |

Threats | T_{1} | T_{2} | T_{3} |
---|---|---|---|

T_{1} | $1$ | 1 | $4$ |

T_{2} | $1$ | $1$ | $1$ |

T_{3} | $4$ | $1$ | $1$ |

Opportunities | T_{1} | T_{2} | T_{3} |
---|---|---|---|

T_{1} | $0.2$ | $0.3$ | $0.7$ |

T_{2} | $0.2$ | $0.3$ | $0.2$ |

T_{3} | $0.7$ | $0.3$ | $0.2$ |

Factors/Sub-Factors | Weight | Alternatives (Strategies) | |||
---|---|---|---|---|---|

SO | ST | WO | WT | ||

Strengths | 0.41 | ||||

S_{1} | 0.29 | 0.4 | 0.1 | 0.3 | 0.2 |

S_{2} | 0.14 | 0.4 | 0.3 | 0.2 | 0.1 |

S_{3} | 0.31 | 0.5 | 0.3 | 0.1 | 0.1 |

S_{4} | 0.24 | 0.3 | 0.2 | 0.4 | 0.1 |

Weaknesses | 0.41 | ||||

W_{1} | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 |

W_{2} | 0.35 | 0.4 | 0.1 | 0.3 | 0.2 |

W_{3} | 0.2 | 0.6 | 0.1 | 0.2 | 0.1 |

Opportunities | 0.1 | ||||

O_{1} | 0.2 | 0.1 | 0.4 | 0.2 | 0.3 |

O_{2} | 0.3 | 0.1 | 0.4 | 0.2 | 0.3 |

O_{3} | 0.5 | 0.3 | 0.2 | 0.3 | 0.2 |

Threats | 0.1 | ||||

T_{1} | 0.4 | 0.1 | 0.4 | 0.2 | 0.3 |

T_{2} | 0.2 | 0.6 | 0.2 | 0.1 | 0.1 |

T_{3} | 0.4 | 0.5 | 0.1 | 0.2 | 0.2 |

Total | 0.34 | 0.2 | 0.22 | 0.15 | |

Rank of strategies | 1 | 3 | 2 | 4 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Abdel-Basset, M.; Mohamed, M.; Smarandache, F.
An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision-Making. *Symmetry* **2018**, *10*, 116.
https://doi.org/10.3390/sym10040116

**AMA Style**

Abdel-Basset M, Mohamed M, Smarandache F.
An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision-Making. *Symmetry*. 2018; 10(4):116.
https://doi.org/10.3390/sym10040116

**Chicago/Turabian Style**

Abdel-Basset, Mohamed, Mai Mohamed, and Florentin Smarandache.
2018. "An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision-Making" *Symmetry* 10, no. 4: 116.
https://doi.org/10.3390/sym10040116