1. Introduction
Decision making problems have become more complicated because of the increasing amount of decision information and alternatives, the inherent uncertainty and complexity of decision problems, the fuzzy nature of human thinking, etc. Many useful tools have been developed to model fuzzy and uncertain information. The neutrosophic set, introduced by Smarandache [
1], is a powerful extension of some classic sets including the fuzzy set [
2], the interval-valued fuzzy set [
3], the intuitionistic fuzzy set [
4], the hesitant fuzzy set [
5], etc. In the neutrosophic set, each element has a truth-membership, an indeterminacy-membership and a falsity-membership belonging to the real standard or non-standard subset of
. Compared to other tools to model fuzzy, inconsistent and uncertain information, the neutrosophic set is more flexible and accurate, which is based on preference order. The neutrosophic set has received broad attention and has been applied extensively [
6,
7,
8,
9,
10,
11,
12]. Wang et al. [
13] proposed a single-valued neutrosophic set and studied various properties of the single-valued neutrosophic set. Ye studied the correlation coefficient of the single-valued neutrosophic set in [
14] and presented the cross-entropy single-valued neutrosophic set in [
15]. Yang et al. [
16] studied the single-valued neutrosophic relations. TOPSIS in the single-valued neutrosophic environment has been studied by Biswas et al. [
17]. Similarity and entropy in the neutrosophic environment were studied by Majumdar and Samant [
18]. Liu et al. [
19] presented some generalized neutrosophic Hamacher aggregation operators. Wang and Li [
20] developed a multi-valued neutrosophic set and presented the TODIMmethod based on multi-valued neutrosophic fuzzy information. Researchers further developed neutrosophic soft sets [
21], trapezoidal neutrosophic sets [
22], single-valued neutrosophic linguistic sets [
23], etc. In the evaluation process, decision makers would like to evaluate with interval numbers rather than crisp numbers due to the fuzzy nature of human thinking. Wang et al. [
24] developed the set-theoretic operators on the neutrosophic set called the interval neutrosophic set. Rdvan [
25] developed some cross-entropy measures on interval neutrosophic fuzzy sets. Liu and Tang [
26] proposed some power generalized aggregation operators for interval neutrosophic information. Liu and Shi [
27] presented some generalized hybrid weighted averaging operators for interval neutrosophic hesitant fuzzy information. Zhang et al. developed an outranking method for interval neutrosophic sets. Yang et al. [
28] proposed the linear assignment method for interval neutrosophic sets. Chi and Liu [
29] extended the TOPSIS method to the interval neutrosophic environment. In complicated decision problems, several experts from different fields have been invited to evaluate alternatives with respect to the attributes, and these experts can provide several evaluation values for hesitation in decision making or can refuse to give any evaluation values if they are unfamiliar with the attributes. Then, we can obtain multi-valued interval neutrosophic values. Though several interval neutrosophic decision methods have been developed, most of them are based on single-valued interval neutrosophic values, and the problems with multi-valued interval neutrosophic values have rarely been studied. In order to deal with complicated decision problems with multiple decision makers involved, the evaluation values of decision makers are given in the form of multi-valued interval neutrosophic values in this paper.
DEMATEL was first developed by the Science and Human affairs Program of the Battelle Memorial Institute of Geneva [
30]. Stević et al. [
31] used DEMATEL and the analytic network process (D-ANP) to determine the weights of factors on the S&P 500 Index futures. The DEMATEL method can be used to identify the possible interdependence among the elements by using the structural modeling technique. The DEMATEL method has been studied extensively and applied in a broad range of fields. Lin and Wu [
32] develop a fuzzy DEMATEL method, in which the evaluation values are triangular fuzzy numbers. Jassbi et al. [
33] built a strategy map by using fuzzy DEMATEL. The DEMATEL method in the intuitionistic fuzzy environment has been studied by Nikjoo and Saeedpoor in [
34]. Govindan in [
35] applied the intuitionistic fuzzy DEMATEL to green supply chain management. DEMATEL for the type-2 fuzzy set has been presented by Hosseini and Tarokh [
36]. Abdullah and Zulkifli [
37] further extended DEMATEL to develop interval type-2 fuzzy DEMATEL, in which fuzzy AHPand interval type-2 fuzzy DEMATEL have been integrated. DEMATEL has been applied in supply chain management, hospital service, emergency management, investment portfolio projects, etc. DEMATEL has been integrated with other decision making methods to solve decision problems, including the ANP, AHP, TOPSIS, VIKOR, grey analysis, ELECTRE, etc. Though several methods based on DEMATEL have been developed, the study of DEMATEL in the multi-valued interval neutrosophic environment has yet to be found. How to determine attribute weights is very important in the decision making process since reasonable weights can ensure scientific and reasonable decision results. DEMATEL can be used to analyze the complex relationship among attributes and their model dependencies. In this paper, the DEMATEL method has been used to determine attribute weights in the multi-valued interval neutrosophic environment. The TOPSIS method was developed by Hwang and Yong [
38], which is based on the idea that the optimal alternative should be the one that is closest to the positive ideal solution and farthest from the negative ideal solution at the same time. TOPSIS has been successfully applied in a wide variety of decision problems due to its comprehensibility and simplicity [
39,
40,
41,
42]. In TOPSIS, how to determine reasonable attribute weights is very important, which could affect whether the decision results are reasonable and efficient. The DEMATEL method can model the relations among criteria by considering the causes and effects of criteria. Thus, more effective attribute weights can be obtained by using the DEMATEL method compared to the existing attribute methods, such as subjective weights or equal weights. In this paper, we integrate the DEMATEL method with the TOPSIS method for multi-valued interval neutrosophic information. The evaluation values are in the form of multi-valued interval neutrosophic values, which can more accurately model the uncertainty, hesitation and fuzziness that exist in the decision making process. The DEMATEL method has been used to determine attribute weights, which can model the dependency among attributes. We define the multi-valued interval neutrosophic fuzzy normalized Euclidean distance and multi-valued interval neutrosophic fuzzy normalized Hamming distance, which can be easily used to measure the similarity of alternatives and ideal alternatives. Based on the distance measures, the TOPSIS method has been used to rank alternatives, which can reduce the heavy computational burden.
In order to do so, the rest of the paper is organized as follows. In
Section 2, some concepts on multi-valued interval neutrosophic sets are reviewed. Some distance measures for multi-valued interval neutrosophic sets are developed. In
Section 3, a new multiple attribute decision making method based on DEMATEL and TOPSIS is proposed for multi-valued interval neutrosophic fuzzy information. In
Section 4, a numerical example is presented to illustrate the feasibility and practical advantages of the new algorithm. Some conclusions are given in the last section.
2. Preliminaries
Definition 1. ([1]) Let X be a universe of discourse, with a generic element in X denoted by x. A neutrosophic set A in X is:where is the truth-membership function, is the indeterminacy-membership function and is the real falsity-membership function. and are real standard or nonstandard subsets of . There is no restriction on the sum of and , and we can obtain . Definition 2. ([6]) Let X be a universe of discourse, with a generic element in X denoted by x. An interval neutrosophic set (INS) in X is:where is the truth-membership function, is the indeterminacy-membership function and is the real falsity-membership function. For each point x in X, we have and . Definition 3. ([27]) Let X be a non-empty finite set. A multi-valued interval neutrosophic fuzzy set (MVINFS) on X is represented by:where , and are sets of interval values, which are the possible truth membership degrees, indeterminacy-membership degrees and falsity-membership degrees of element x to set satisfying , , and , where , , . Let be a multi-valued interval neutrosophic fuzzy element (MVINFE). Let , be two MVINFEs, , , , , , , . The operational laws of MVINFEs can be defined as follows:
(1) ,
(2) ,
(3) ,
(4) .
Definition 4. ([11]) Let be MVINFEs and be the weight vector with . The multi-valued interval neutrosophic fuzzy weighted average (MVINFWA) operator can be defined as: By using the operational laws of MVINFEs, we can obtain:
where
,
,
.
Definition 5. ([27]) For an MVINFE ,is called the score function of , where are the numbers of the interval values in , , respectively. Different truth-membership functions, indeterminacy-membership functions and real falsity- membership functions may have different numbers of interval values. In order to define distance more clearly, MVINFEs should be extended until all truth-membership functions, indeterminacy-membership functions and real falsity-membership functions have the same number of interval values according to the risk attitude of decision makers. If the decision makers are risk-seeking, the largest truth-membership, the smallest indeterminacy-membership and the smallest falsity-membership should be added. If decision makers are risk-averse, the smallest truth-membership, the largest indeterminacy-membership and the largest falsity-membership should be added. If decision makers are risk-neutral, the average truth-membership, the average indeterminacy-membership and the average indeterminacy-membership should be added.
The following equation can be used to rank interval numbers.
Definition 6. ([43]) Let . Then, a is an interval number. Let be two interval number and Then, the possibility of can be defined as: We generalize the multi-valued neutrosophic fuzzy distance measures to accommodate multi-valued interval neutrosophic fuzzy values and develop the following distance measures.
Definition 7. Let and be two MVINFEs, then the normalized Euclidean distance between and is defined as follows: The normalized Hamming distance is defined as:
where
,
,
,
,
,
,
are the numbers of interval values in
, respectively. The distance measures can be proven to satisfy the following properties easily.
- (1)
,
- (2)
, if and only if ,
- (3)
.
3. The Multi-Valued Interval Neutrosophic Fuzzy Decision Making Method Based on DEMATEL and TOPSIS
In this section, we develop a new multiple attribute decision making method based on DEMATEL and TOPSIS for multi-valued interval neutrosophic fuzzy information. In this method, DEMATEL has been used to determine attribute weights, and TOPSIS has been used to rank alternatives.
The concrete steps of the DEMATEL are as follows.
Step 1. Generate the direct-relation matrix. Decision makers are asked to assess the effect among factor pairs. The direct-relation matrix is established as , where A is an non-negative matrix, indicates the direct effect of factor i on factor j and the diagonal elements for .
Step 2. Normalize the direct-relation matrix by , where and obtain the normalized initial direct-relation matrix as .
Step 3. Set up the total-relation matrix by the following equation:
where
I is the
identity matrix and
is the indirect effect of criterion
i on criterion
j.
Step 4. Sum each row and each column of matrix
T by Equations (
10) and (
11). The sum of row
i is denoted by
and:
where
denotes the direct and indirect influence of criterion
i on the other criteria and
is called the the degree of influential impact. The sum of column
j is denoted by
and:
where
denotes the direct and indirect effect of criterion
j with respect to the other criteria.
shows all the effects of giving and receiving of criterion
i. By using the
, the priority weight of each criterion can be calculated as follows:
After obtaining the attribute weights, we can rank alternatives by using the TOPSIS method.
Based on the above analysis, we present the new multiple attribute decision making method for multi-valued interval neutrosophic fuzzy information based on DEMATEL and TOPSIS. For a multiple attribute decision making problem, is the set of alternatives and is the set of attributes. For a complicated decision problem, decision makers would express some extent of hesitation in evaluating alternatives and attributes. In order to model evaluation values more accurately, we use interval neutrosophic fuzzy values, in which the truth-membership function, the indeterminacy-membership function and the real falsity-membership function are all interval values. Many complex decision problems need experts from different fields. Since each expert has his/her own field of expertise, they may be familiar with some attributes and not with other attributes. In order to obtain more accurate evaluation values, they can refuse to give evaluation values or give several evaluation values. Then, we can obtain multi-valued interval neutrosophic fuzzy information. In this case, the new decision making method based on DEMATEL and TOPSIS is developed in the following steps.
Algorithm
Step 1. Decision makers provide interval neutrosophic fuzzy evaluation values in the pairwise comparison of attributes. Then, the multi-valued interval neutrosophic fuzzy decision matrix is formed as
,
.
are the sets of the truth-membership function, the indeterminacy-membership function and the falsity-membership function, respectively.
,
.
Step 2. Normalize the initial direct-relation decision matrix. Calculate the average values of the truth-membership, the indeterminacy-membership and the real falsity-membership in each multi-valued interval neutrosophic fuzzy value and transform the multi-valued interval neutrosophic fuzzy decision matrix into single-valued interval neutrosophic fuzzy decision matrix
by calculating the average values, where
,
,
,
,
,
,
.
Normalize decision matrix into , , , , , , , , , , .
Step 3. Calculate the total-relation matrix, which can be calculated by using the above six crisp matrices and can be represented as follows.
where
. The elements in total-relation matrix can be calculated by the following equation
,
,
, …,
. Since we calculate the inverse matrices of matrices
in calculating the total-relation matrix, the elements in the total-relation matrix are generalized interval neutrosophic fuzzy values.
Step 4. Determine the prominence and influence of each attribute. Calculate the sum
of rows and sum
of columns by the following equations.
Step 5. Calculate the weights of attributes by the following equation:
Step 6. Decision makers evaluate alternatives with respect to attributes with interval neutrosophic fuzzy values, and then multi-valued interval neutrosophic fuzzy decision matrix can be obtained as , where . Extend the decision matrix according to the risk attitude of decision makers until all the multi-valued interval neutrosophic fuzzy values have the same number of truth-memberships, indeterminacy-memberships and real falsity-memberships. Then, the extended decision matrix can be obtained as , .
Step 7. Calculate the weighted decision matrix
by using the attribute weights obtained from Equation (
11), where
.
Step 8. Determine the multi-valued interval neutrosophic fuzzy positive ideal solution (MVINFPIS), denoted as
and the multi-valued interval neutrosophic fuzzy negative ideal solution (MVINFNIS), denoted as
, as follows:
Step 9. Calculate the distances of each alternative’s weighted evaluation values to the MVINFPIS and MVINFNIS:
Step 10. Determine the closeness coefficients
of alternatives and rank alternatives according to the closeness coefficients.
The new algorithm has the following advantages. First, evaluation values are in the form of multi-valued interval neutrosophic fuzzy values, in which the hesitation of decision makers and fuzzy nature of human thinking can be reflected accurately. Second, the DEMATEL method has been used to determine attribute weights, which can overcome the existing shortcomings of attribute-determining methods, especially for large-scale, complex decision problems such as supply chain management, strategic management, etc. Third, the TOPSIS method has been used to rank alternatives to avoid the complexity of computation and affect the decision makers’ subjectiveness.
4. Numerical Example
In this section, we apply the new algorithm to the problem of truck selection (adapted from [
44]) in the logistics industry to illustrate its feasibility and effectiveness. The logistics industry has witnessed a high speed growth with the development of e-commerce, mobile e-commence, etc. Land transportation plays an important role in logistics, which is generally operated in complex environments. Truck selection is important to logistics companies. Suppose that a logistics company wants to purchase a number of trucks. Experts from different departments are invited to form a committee to evaluate and select trucks. The following four attributes are considered:
-security and technology,
-economy,
-comfort and aesthetics,
-maintenance. After pre-evaluation, there are still five types of trucks for further selection
. The new method has been used to rank alternatives, concretely.
Step 1. Decision makers compare attributes pairwise by using multi-valued interval neutrosophic fuzzy values, and decision matrix
is formed as in
Table 1.
Step 2. Transform decision matrix
into single-valued interval neutrosophic fuzzy decision matrix
as in
Table 2 by calculating the average values of the truth-membership, the indeterminacy-membership and the falsity-membership. Normalize decision matrix
to obtain decision matrix
, which can be represented as matrices
. For example, since
and
, then decision matrix
can be obtained.
Step 3. Calculate the total-relation matrix
by using decision matrices
, where
and
,…,
. The results are shown in
Table 3.
Step 4. Calculate the average value of each row to obtain
and the average of each column to obtain
by using Equations (
13) and (
14). The results are as follows:
, , , , , , , .
Step 5. Calculate the weights of attributes by using Equation (
15) to obtain
, , , .
Step 6. Decision makers evaluate alternatives with respect to attributes by using the multi-valued interval neutrosophic fuzzy values. Then, decision matrix
is formed as in
Table 4.
Step 7. Extend the decision matrix according to the risk attitude of decision makers. Assume that decision makers are risk-averse, then add the smallest interval truth-membership, the largest interval indeterminacy-membership and the largest real interval falsity-membership. The extended decision matrix is omitted due to space limitations.
Step 8. Calculate the extended weighted decision matrix
,
. The results are shown in
Table 5.
Step 9. MVINFPIS and MVINFNIS can be determined by using Equations (
16) and (
17):
MVINFPIS: ( , , ).
MVINFNIS: ( , , , ).
The distances of each alternative’s evaluation values to the MVINFPIS and MVINFNIS can be calculated by using Equations (
18) and (
19) as
Step 10. The closeness coefficients can be calculated by using Equation (
20) as
The alternatives can be ranked accordingly as , and the optimal alternative is .
In order to illustrate the advantages of the new method, we compare it with some other methods. If evaluation values are given in crisp numbers, the multi-valued interval neutrosophic fuzzy decision matrix reduces to multi-valued neutrosophic fuzzy decision matrix
M as in
Table 6 (denoted as Method 1). Then, we transform the multi-valued neutrosophic fuzzy decision matrix into the single-value neutrosophic fuzzy decision matrix by calculating the average values and normalizing. Calculate the total-relation matrix
as in
Table 7, where
,
. The elements in the total-relation matrix
are generalized neutrosophic fuzzy values. The average value of each rank can be calculated as
, and the average value of each column can be calculated as
. Concretely,
,
,
,
,
,
,
,
. Let
. Attribute weights can be calculated as
Decision makers evaluate alternatives with multi-valued neutrosophic fuzzy values, and the decision matrix is formed as in
Table 8. Assume decision makers are risk-averse. Then, we extend the decision matrix by adding the smallest truth-membership, the largest indeterminacy-membership and the largest real falsity-membership. Then, the extended decision matrix is obtained. Calculate the weighted decision matrix by using attribute weights and results are shown in
Table 9. Determine the multi-valued neutrosophic fuzzy positive ideal solution (MNFPIS)
and the multi-valued neutrosophic fuzzy negative ideal solution (MNFNIS)
as
. The distances of each weighted evaluation value to the MNFPIS
and MNFNIS
can be calculated as
The closeness coefficients can be calculated as
The alternatives can be ranked as
, and the optimal alternative is
. From the result, we can obtain similar ranking results. If evaluation values are in the form of multi-valued neutrosophic fuzzy values, the attribute weights are different from those of the interval forms. The attributes
and
have relatively big weights, while in the multi-valued interval neutrosophic fuzzy situation, the attributes
and
have relatively big weights. Since interval values are more appropriate to model fuzzy and uncertain information, more accurate decision results can be obtained by using interval multi-valued neutrosophic fuzzy values.
We use the MVINFWA operator to aggregate multi-valued interval neutrosophic fuzzy values into collective ones, and the attribute weights are also taken as , which are the same as those of the proposed method (denoted as Method 2). The first six steps are the same as the proposed method. Then, we use the MVINFWA operator aggregate evaluation values (the results have been omitted due to space limitations). The scores of the collective evaluation values can be calculated as Compare . We can obtain . The ranking results are similar to the proposed method. and have different rankings in the two methods.
We summarize the above analysis in
Table 10. In the proposed method, the fuzzy and uncertain information is modeled by using multi-valued interval neutrosophic fuzzy values. The attribute weights are determined by using DEMATEL, which can model the interactions and dependencies among attributes. The TOPSIS method is used to rank alternatives, and the amount of computation has been reduced greatly.
We further compare the proposed method with some other existing methods [
29,
45]. We first transform the multi-valued interval neutrosophic fuzzy values into interval neutrosophic fuzzy values by using the interval-valued neutrosophic fuzzy averaging operator. Then, we use the interval-valued neutrosophic fuzzy weighted averaging operator [
45] or TOPSIS [
29] to obtain the ranking results, which are shown in
Table 11. The attribute weights are taken as
, which are the same as our proposed method, in order to facilitate comparison. From the results, we can see that, though the optimal alternative is the same, the rankings of alternatives are different. Moreover, the attribute weights are not determined properly in the existing methods. Hence, compared to other methods, the proposed method can determine attribute weights reasonably and solve complicated decision problems by using multi-valued interval neutrosophic fuzzy values.