# Nonclassical Symmetry Solutions for Fourth-Order Phase Field Reaction–Diffusion

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Nonclassical Symmetry Reduction

#### 2.1. Role of a Fourth-Order Kirchhoff–Helmholtz Equation

#### 2.2. Amenable Diffusivity and Reaction Functions

## 3. Interior Solutions for Slabs, Cylinders, and Spheres

## 4. Interior Solutions for Rectangular Domains

## 5. Energy Formulation

## 6. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Wang, Y.U.; Jin, Y.M.; Cuitiño, A.M.; Khachaturyan, A.G. Nanoscale phase field microelasticity theory of dislocations: Model and 3D simulations. Acta Mater.
**2001**, 49, 1847–1857. [Google Scholar] [CrossRef] - Green, H.S.; Hurst, C.A. Order-Disorder Phenomena; Interscience: London, UK, 1964. [Google Scholar]
- Yu, L.; Ding, G.L.; Reye, J.; Ojha, S.N.; Tewari, S.N. Mushy Zone Morphology during Directional Solidi Cation of Pb-5.8 Wt Pct Sb Alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
**2000**, 31, 2275–2285. [Google Scholar] [CrossRef] - Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys.
**1958**, 28, 258–267. [Google Scholar] [CrossRef] - Allen, S.M.; Cahn, J.W. A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall.
**1979**, 27, 1085–1095. [Google Scholar] [CrossRef] - Gurtin, M.E. Generalized Ginzburg-Landau and Cahn-Hilliard Equations based on a microforce balance. Physica D: Nonlinear Phenomena
**1996**, 92, 178–192. [Google Scholar] [CrossRef] - Caginalp, G. The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits. IMA J. Appl. Math.
**1990**, 44, 77–94. [Google Scholar] [CrossRef] - Jones, J.A. Derivation and analysis of phase field models of thermal alloys. Ann. Phys.
**1995**, 237, 66–107. [Google Scholar] - Novick-Cohen, A. The Cahn-Hilliard Equation. In Handbook of Differential Equations. IV Evolutionary Partial Differential Equations; Dafermos, C., Pokorny, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 201–228. [Google Scholar]
- Kim, J.; Lee, S.; Choi, Y.; Lee, S.-M.; Jeong, D. Basic Principles and Practical Applications of the Cahn-Hilliard Equation. Math. Probl. Eng.
**2016**, 2016, 9532608. [Google Scholar] [CrossRef] - Landau, L.D.; Khalatnikov, I.M. On the theory of superconductivity. In Collected Papers of L.D. Landau; Ter Haar, D., Ed.; Pergamon: Oxford, UK, 1965. [Google Scholar]
- Skellam, J.G. The formulation and interpretation of mathematical models of diffusionary processes in population biology. In The Mathematical Theory of the Dynamics of Biological Populations; Bartlett, M.S., Hiorns, R.W., Eds.; Academic Press: New York, NY, USA, 1973; pp. 63–85. [Google Scholar]
- Broadbridge, P.; Bradshaw, B.H.; Fulford, G.R.; Aldis, G.K. Huxley and Fisher Equations for Gene Propagation: An Exact Solution. Anziam J.
**2002**, 44, 11–20. [Google Scholar] [CrossRef] - Bradshaw-Hajek, B.H.; Broadbridge, P. A robust cubic reaction-diffusion system for gene propagation. Math. Comput. Model.
**2004**, 39, 1151–1163. [Google Scholar] [CrossRef] - Ulusoy, S. A new family of higher order nonlinear degenerate parabolic equations. Nonlinearity
**2007**, 20, 685–712. [Google Scholar] [CrossRef] - Karali, G.; Katsoulakis, M.A. The role of multiple microscopic mechanisms in cluster interface evolution. J. Differ. Equ.
**2007**, 235, 418–438. [Google Scholar] [CrossRef] - Galaktionov, V.A.; Svirshchevskii, S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Cherniha, R.; Myroniuk, L. Lie symmetries and exact solutions of a class of thin film equations. J. Phys. Math.
**2010**, 2. [Google Scholar] [CrossRef] - Raats, P.A.C. Analytic solutions of a simplified flow equation. Trans. ASAE
**1976**, 19, 683–689. [Google Scholar] [CrossRef] - Philip, J.R. The scattering analog for infiltration in porous media. Rev. Geophys.
**1989**, 27, 431–448. [Google Scholar] [CrossRef] - Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Fushchych, W.I. How to extend symmetry of differential equations? In Symmetry and Solutions of Nonlinear Equations of Mathematical Physics; Institute of Mathematics Ukrainian Academy of Sciences: Kyiv, Ukraine, 1987; pp. 4–16. [Google Scholar]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech.
**1969**, 18, 1025–1042. [Google Scholar] - Mansfield, E. The nonclassical group analysis of the heat equation. J. Math. Anal. Appl.
**1999**, 231, 526–542. [Google Scholar] [CrossRef] - Arrigo, D.J.; Hill, J.M.; Broadbridge, P. Nonclassical symmetry reductions of the linear diffusion equation with a nonlinear source. IMA J. Appl. Math.
**1994**, 52, 1–24. [Google Scholar] [CrossRef] - Clarkson, P.A.C.; Mansfield, E.L. Symmetry reductions and exact solutions of a class of nonlinear heat equation. Physica D
**1993**, 70, 250–288. [Google Scholar] [CrossRef] - Cherniha, R.; Davydovych, V. Nonlinear Reaction-Diffusion Systems. Conditional Symmetry, Exact Solutions and Their Applications in Biology; Springer: Berlin, Germany, 2017. [Google Scholar]
- Goard, J.; Broadbridge, P. Nonclassical symmetry analysis of nonlinear reaction-diffusion equations in two spatial dimensions. Nonlinear Anal. Theory Methods Appl.
**1996**, 26, 735–754. [Google Scholar] [CrossRef] - Kirchhoff, G. Vorlesungen über die Theorie der Wärme; B. G. Teubner: Leipzig, Germany, 1894. [Google Scholar]
- Broadbridge, P.; Bradshaw-Hajek, B.H.; Triadis, D. Exact non-classical symmetry solutions of Arrhenius reaction-diffusion. Proc. R. Soc. Lond. A
**2015**, 471. [Google Scholar] [CrossRef] - Broadbridge, P.; Daly, E.; Goard, J. Exact solutions of the Richards equation with nonlinear plant-root extraction. Water Resour. Res.
**2017**, 53, 9679–9691. [Google Scholar] [CrossRef] - Broadbridge, P.; Bradshaw-Hajek, B. Exact solutions for logistic reaction-diffusion in biology. Z. Angew. Math. Phys.
**2016**, 67, 93–105. [Google Scholar] [CrossRef] - Tehseen, N.; Broadbridge, P. Classification of Fourth Order Diffusion Equations with Increasing Entropy. Entropy
**2012**, 14, 1127–1139. [Google Scholar] [CrossRef] - Vázquez, J.L. The Porous Medium Equation; Clarendon Press: Oxford, UK, 2006. [Google Scholar]
- Liu, Q.-X.; Doelman, A.; Rottschäfer, V.; de Jager, M.; Herman, P.M.J.; Rietkerk, M.; van de Koppel, J. Phase separation explains a new class of self-organized spatial patterns in ecological systems. Proc. Natl. Acad. Sci. USA
**2013**, 110, 11905–11910. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Iterated approximations to the diffusivity function. ${D}_{1}$ (solid), ${D}_{2}$ (dash-dot) with $\kappa =1$, $A=-5/2$.

**Figure 2.**Cubic reaction term R (solid). Exact matching partner ${R}_{1}$ (dash-dot) for ${D}_{1}$ with $A=-5/2$.

**Figure 5.**Critical combinations of ${x}_{0}$ and ${y}_{0}$ separating the feasible rectangular solution region from the region where ${x}_{0}$ and ${y}_{0}$ in combination do not admit physical solutions.

**Figure 6.**A non-negative solution $\varphi (x,y)$ with $\kappa =1$, ${x}_{0}=0.3$, and ${y}_{0}=1.2$ that exhibits a pronounced sub-structure.

**Figure 7.**A non-negative solution $\varphi (x,y)$, periodic in the y direction with $\kappa =1$, and ${x}_{0}=0.4$.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Broadbridge, P.; Triadis, D.; Gallage, D.; Cesana, P.
Nonclassical Symmetry Solutions for Fourth-Order Phase Field Reaction–Diffusion. *Symmetry* **2018**, *10*, 72.
https://doi.org/10.3390/sym10030072

**AMA Style**

Broadbridge P, Triadis D, Gallage D, Cesana P.
Nonclassical Symmetry Solutions for Fourth-Order Phase Field Reaction–Diffusion. *Symmetry*. 2018; 10(3):72.
https://doi.org/10.3390/sym10030072

**Chicago/Turabian Style**

Broadbridge, Philip, Dimetre Triadis, Dilruk Gallage, and Pierluigi Cesana.
2018. "Nonclassical Symmetry Solutions for Fourth-Order Phase Field Reaction–Diffusion" *Symmetry* 10, no. 3: 72.
https://doi.org/10.3390/sym10030072