# Construction of Fullerenes and Pogorelov Polytopes with 5-, 6- and one 7-Gonal Face

^{†}

## Abstract

**:**

## 1. Introduction

**Proposition**

**1.**

**Theorem 1**(Steinitz)

**.**

**Theorem**

**2.**

**Example**

**1.**

**Theorem 4**(The first main result)

**.**

**Remark**

**1.**

**Theorem**

**5**

**.**A simple 3-polytope P is a $Pog$-polytope if and only if either P is a q-barrel, $q\ge 5$, or it can be constructed from the 5- or the 6-barrel by a sequence of $(2,k)$-truncations (Figure 8a), $k\ge 6$, and connected sums with the 5-barrel (Figure 8b).

**Theorem**

**6**

**.**Any fullerene $P\in \mathcal{F}\backslash {\mathcal{F}}^{\ast}=\mathcal{D}\backslash \{{D}_{0}\}$ can be constructed from the 5-barrel by operations of a connected sum with a copy of the 5-barrel along the center of a patch ${C}_{1}$. It cannot be obtained from a simple 3-polytope without 4-gons by a $(2,k)$-truncation, $k\ge 6$.

**Proposition**

**2.**

**Theorem 7**(The second main result)

**.**

**Theorem 8**(The third main result)

**.**

## 2. Proof of the Main Results

**Proof of the first main result**

**(Theorem 4).**

**Corollary**

**1.**

**Proof.**

**Example**

**2.**

**Remark**

**2.**

**Theorem**

**9.**

**Proof of the second main result**

**(Theorem 7).**

**Proof**

**of Proposition 2.**

**Corollary**

**2.**

**Proof.**

**Lemma**

**1.**

**Proof.**

**Lemma**

**2.**

**Proof.**

**Lemma**

**3.**

**Proof.**

**Lemma**

**4.**

**Proof.**

**Lemma**

**5.**

**Proof.**

**Lemma**

**6.**

**Proof.**

**Lemma**

**7.**

**Proof.**

**Proof of the third main result**

**(Theorem 8).**

**Lemma**

**8.**

**Proof.**

## 3. Discussion

## 4. Prospects

- The result of Theorem 8 may be strengthened. It seems that the operation of a $(2,7;6,6)$-truncation can be eliminated. Furthermore, it seems to be an open question whether there is a finite set of growth operations transforming the family ${\mathcal{P}}_{\le 7}$ to itself sufficient to reduce any polytope in ${\mathcal{P}}_{7}$ with all the non-hexagons isolated to some polytope in ${\mathcal{P}}_{\le 7}$. Let us remind that due to results in [51], there are no finite sets of growth operations transforming fullerenes to fullerenes sufficient to reduce any fullerene with all 5-gons isolated to some fullerene.
- There arise further questions about p-vectors of $Pog$-polytopes. For example, for given numbers $({p}_{k},k\ge 7)$ for which values of ${p}_{6}$ does a $Pog$-polytope realizing this p-vector exist?
- To apply the construction of fullerenes and $Pog$-polytopes by operations presented in this article to problems in polytope theory, toric topology and hyperbolic geometry; for example, to give a new proof of the four color theorem for special classes of $Pog$-polytopes; or for a given $Pog$-polytope to enumerate all characteristic mappings $\Lambda $ and ${\Lambda}_{2}$. There is a question about describing the transformation of differential-geometric and algebraic-topological properties of the manifolds under transformation of polytopes.
- To estimate the numbers of polytopes in ${\mathcal{P}}_{7}$ and ${\mathcal{P}}_{7,5}$ with the given number of faces.

## Acknowledgments

## Conflicts of Interest

## Abbreviations

$\mathcal{F}$ | the family of fullerenes |

${\mathcal{P}}_{7}$ | the family of simple 3-polytopes with 5-, 6- and one 7-gonal face |

${\mathcal{P}}_{7,5}$ | the subfamily in ${\mathcal{P}}_{7}$ consisting of polytopes with the 7-gon adjacent to a 5-gon |

${\mathcal{P}}_{\le 7,5}$ | $\mathcal{F}\bigsqcup {\mathcal{P}}_{7,5}$ |

${\mathcal{P}}_{\le 7}$ | $\mathcal{F}\bigsqcup {\mathcal{P}}_{7}$ |

$\mathcal{D}$ | the family of polytopes consisting of the dodecahedron and the $(5,0)$-nanotubes |

$Pog$-polytope | Pogorelov polytope |

$Po{g}^{\ast}$-polytope | Pogorelov polytope with any 5-belt surrounding a face |

$ck$-connected | cyclically k-edge connected |

${c}^{\ast}k$-connected | strongly cyclically k-edge connected |

${\mathcal{A}}^{\ast}$ | the subfamily of all $Po{g}^{\ast}$-polytopes in a family $\mathcal{A}$ |

## References

- Ziegler, G.M. Lectures on Polytopes, 7th ed.; Springer: New York, NY, USA, 2007; Volume 152. [Google Scholar]
- Grünbaum, B. Convex Polytopes, 2nd ed.; Springer: New York, NY, USA, 2003; Volume 221. [Google Scholar]
- Buchstaber, V.M.; Erokhovets, N.Y.; Masuda, M.; Panov, T.E.; Park, S. Cohomological rigidity of manifolds defined by 3-dimensional polytopes. Rus. Math. Surv.
**2017**, 72, 199–256. [Google Scholar] [CrossRef] - Buchstaber, V.M.; Erokhovets, N.Y. Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes. Izv. Math.
**2017**, 81, 901–972. [Google Scholar] [CrossRef] - Vesnin, A.Y. Right-angled polyhedra and hyperbolic 3-manifolds. Rus. Math. Surv.
**2017**, 72, 335–374. [Google Scholar] [CrossRef] - Andreev, E.M. On convex polyhedra in Lobachevskii spaces. Math. USSR-Sb.
**1970**, 10, 413–440. [Google Scholar] [CrossRef] - Birkhoff, G.D. The Reducibility of Maps. Am. J. Math.
**1913**, 35, 115–128. [Google Scholar] [CrossRef] - Barnette, D. On generation of planar graphs. Discret. Math.
**1974**, 7, 199–208. [Google Scholar] [CrossRef] - Barnette, D. Generating the c
^{∗}-5-connected graphs. Isr. J. Math.**1977**, 28, 151–160. [Google Scholar] [CrossRef] - Pogorelov, A.V. A regular partition of Lobachevskian space. Math. Notes
**1967**, 1, 3–5. [Google Scholar] [CrossRef] - Buchstaber, V.M.; Panov, T.E. Toric Topology (Mathematical Surveys and Monographs); American Mathematical Society: Providence, RI, USA, 2015; Volume 204, ISBN 978-1-4704-2214-1. [Google Scholar]
- Fan, F.; Ma, J.; Wang, X. B-Rigidity of flag 2-spheres without 4-belt. arXiv, 2015; arXiv:1511.03624. [Google Scholar]
- Buchstaber, V.M.; Erokhovets, N.Y. Fullerenes, Polytopes and Toric Topology. In Combinatorial and Toric Homotopy: Introductory Lectures of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore; World Scientific Publishing Co.: Singapore, 2017; Volume 35, pp. 67–178. ISBN 978-981-3226-58-6. [Google Scholar]
- Vesnin, A.Y. Three-dimensional hyperbolic manifolds of Löbell type. Siberian Math. J.
**1987**, 28, 731–734. [Google Scholar] [CrossRef] - Lovasz, L.; Plummer, M.D. Matching Theory; Annals of Discrete Mathematics; Elsevier Science Publishers: Amsterdam, The Netherlands, 1986; Volume 29. [Google Scholar]
- Butler, J.W. A generation procedure for the simple 3-polytopes with cyclically 5-connected graphs. Can. J. Math.
**1974**, 26, 686–708. [Google Scholar] [CrossRef] - Robertson, N.; Seymour, P.D.; Thomas, R. Cyclically five-connected cubic graphs. J. Comb. Theory Ser. B
**2017**, 125, 132–167. [Google Scholar] [CrossRef] - Appel, K.; Haken, W. Every planar map is four colorable, Part I. Discharging. Ill. J. Math.
**1977**, 21, 429–490. [Google Scholar] - Appel, K.; Haken, W.; Koch, J. Every planar map is four colorable, Part II. Reducibility. Ill. J. Math.
**1977**, 21, 491–567. [Google Scholar] - Appel, K.; Haken, W. Every planar map is four colorable, with the collaboration of D. Koch. In Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 1989; Volume 98. [Google Scholar]
- Dǒslić, T. On lower bounds of number of perfect matchings in fullerene graphs. J. Math. Chem.
**1998**, 24, 359–364. [Google Scholar] [CrossRef] - Fowler, P.W.; Graovac, A.; Žerovnik, J.; Pisanski, T. A Generalized Ring Spiral Algorithm for Coding Fullerenes and Other Cubic Polyhedra; Preprint Series; Institute of Mathematics, Physics and Mechanics, Department of Mathematics, University of Ljubljana: Ljubljana, Slovenia, 1998. [Google Scholar]
- Buchstaber, V.M.; Erokhovets, N.Y. Truncations of simple polytopes and applications. Proc. Steklov Inst. Math.
**2015**, 289, 104–133. [Google Scholar] [CrossRef] - Dǒslić, T. Cyclical edge-connectivity of fullerene graphs and (k,6)-cages. J. Math. Chem.
**2003**, 33, 103–112. [Google Scholar] [CrossRef] - Qi, Z.; Zhang, H. A note on the cyclical edge-connectivity of fullerene graphs. J. Math. Chem.
**2008**, 43, 134–140. [Google Scholar] [CrossRef] - Buchstaber, V.M.; Erokhovets, N. Construction of fullerenes. arXiv, 2015; arXiv:1510.02948. [Google Scholar]
- Curl, R.F. Dawn of the fullerenes: Experiment and conjecture. Nobel lecture, 1996. In Nobel Lectures: Chemistry; Grethe, I., Ed.; World Scientific Publishing Co.: Singapore, 2003; pp. 11–32. ISBN 981-02-4958-6. Available online: https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1996/curl-lecture.html (accessed on 14 March 2018).
- Kroto, H.W. Symmetry, space, stars and C60. Nobel lecture, 1996. In Nobel Lectures: Chemistry; Grethe, I., Ed.; World Scientific Publishing Co.: Singapore, 2003; pp. 44–79. ISBN 981-02-4958-6. Available online: https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1996/kroto-lecture.html (accessed on 14 March 2018).
- Smalley, R.E. Discovering the fullerenes. Nobel lecture, 1996. In Nobel Lectures: Chemistry; Grethe, I., Ed.; World Scientific Publishing Co.: Singapore, 2003; pp. 89–102. ISBN 981-02-4958-6. Available online: https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1996/smalley-lecture.html (accessed on 14 March 2018).
- Deza, M.; Dutour Sikirić, M.; Shtogrin, M.I. Fullerenes and disc-fullerenes. Rus. Math. Surv.
**2013**, 68, 665–720. [Google Scholar] [CrossRef] - Andova, V.; Kardoš, F.; Škrekovski, R. Mathematical aspects of fullerenes. Ars Math. Contemp.
**2016**, 11, 353–379. [Google Scholar] - Deza, M.; Dutour Sikiric, M.; Shtogrin, M.I. Geometric Structure of Chemistry-Relevant Graphs; Springer: New Delhi, India, 2015; ISBN 978-81-322-2449-5. [Google Scholar]
- Cataldo, F.; Graovac, A.; Ori, O. (Eds.) The Mathematics and Topology of Fullerenes; Springer: Dordrecht, The Netherlands, 2011; ISBN 978-94-007-0221-9. [Google Scholar]
- Fowler, P.W.; Manolopoulos, D.E. An Atlas of Fullerenes, 2nd ed.; Dover Publications, Inc.: Mineola, New York, NY, USA, 2007; ISBN 978-0486453620. [Google Scholar]
- Schwerdtfeger, P.; Wirz, L.; Avery, J. The topology of fullerenes. WIREs Comput. Mol. Sci.
**2015**, 5, 96–145. [Google Scholar] [CrossRef] [PubMed] - Thurston, W.P. Shapes of polyhedra and triangulations of the sphere. Geom. Topol. Monogr.
**1998**, 1, 511–549. [Google Scholar] [CrossRef] - Vesnin, A.Y. Volumes of hyperbolic Löbell 3-manifolds. Math. Notes
**1998**, 64, 15–19. [Google Scholar] [CrossRef] - Inoue, T. Organizing volumes of right-angled hyperbolic polyhedra. Algebr. Geom. Topol.
**2008**, 8, 1523–1565. [Google Scholar] [CrossRef] - Eberhard, V. Zur Morphologie der Polyeder; Teubner: Leipzig, Germany, 1891. [Google Scholar]
- Brinkmann, G.; Goetschalckx, P.; Schein, S. Comparing the constructions of Goldberg, Fuller, Caspar, Klug and Coxeter, and a general approach to local symmetry-preserving operations. Proc. R. Soc. A
**2017**, 473. [Google Scholar] [CrossRef] - Inoue, T. The 825 smallest right-angled hyperbolic polyhedra. arXiv, 2015; arXiv:1512.01761. [Google Scholar]
- Brückner, M. Vielecke und Vielflache. Theorie und Geschichte; Teubner: Leipzig, Germany, 1900. [Google Scholar]
- Steinitz, B.; Rademacher, H. Vorlesungen über die Theorie der Polyeder; Springer-Verlag: Berlin, Germany, 1934. [Google Scholar]
- Fedorov, E.S. Foundations of morphology and systematics of polyhedra. Zap. Imperat. S.-Petersb. Mineralog. Obshch.
**1983**, 30, 241–341. (In Russian) [Google Scholar] - Kotzig, A. Regularly connected trivalent graphs without non-trivial cuts of cardinality 3. Acta Fac. Rerum Natur. Univ. Comenian. Math. Publ.
**1969**, 21, 1–14. [Google Scholar] - Faulkner, G.B.; Younger, D.H. The recursive generation of cyclically k-connected cubic planar maps. In Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress, Thunder Bay, ON, Canada, 16–18 June 1971; pp. 349–356. [Google Scholar]
- Volodin, V.D. Combinatorics of flag simplicial 3-polytopes. Rus. Math. Surv.
**2015**, 70, 168–170. [Google Scholar] [CrossRef] - Buchstaber, V.M.; Erokhovets, N.Y. Finite sets of operations sufficient to construct any fullerene from C
_{20}. Struct. Chem.**2017**, 28, 225–234. [Google Scholar] [CrossRef] - Hasheminezhad, M.; Fleischner, H.; McKay, B.D. A universal set of growth operations for fullerenes. Chem. Phys. Lett.
**2008**, 464, 118–121. [Google Scholar] [CrossRef] - Endo, M.; Kroto, H.W. Formation of carbon nanofibers. J. Phys. Chem.
**1992**, 96, 6941–6944. [Google Scholar] [CrossRef] - Brinkmann, G.; Graver, J.E.; Justus, C. Numbers of faces in disordered patches. J. Math. Chem.
**2009**, 45, 263–278. [Google Scholar] [CrossRef] - Kardoš, F.; Škrekovski, R. Cyclic edge-cuts in fullerene graphs. J. Math. Chem.
**2008**, 44, 121–132. [Google Scholar] [CrossRef] - Kutnar, K.; Marušič, D. On cyclic edge-connectivity of fullerenes. Discret. Appl. Math.
**2008**, 156, 1661–1669. [Google Scholar] [CrossRef] - Grünbaum, B. Some analogues of Eberhard’s theorem on convex polytopes. Isr. J. Math.
**1968**, 6, 398–411. [Google Scholar] [CrossRef] - Buckminster Fuller, R.; Marks, R.W. The Dymaxion World of Buckminster Fuller; Doubleday: New York, NY, USA, 1973. [Google Scholar]
- Goldberg, M. The Isoperimetric Problem for Polyhedra. Tohoku Math. J.
**1935**, 40, 226–236. [Google Scholar] - Goldberg, M. A Class of Multi-Symmetric Polyhedra. Tohoku Math. J.
**1937**, 43, 104–108. [Google Scholar] - Caspar, D.L.D.; Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol.
**1962**, 27, 1–24. [Google Scholar] [CrossRef] [PubMed] - Coxeter, H.S.M. Virus macromolecules and geodesic domes. In A Spectrum of Mathematics: Essays Presented to H.G. Forder; Butcher, J.C., Ed.; Auckland and Oxford University Press: Auckland, New Zealand, 1971; pp. 98–107. [Google Scholar]
- Grünbaum, B.; Motzkin, T.S. The number of hexagons and the simplicity of geodesics on certain polyhedra. Can. J. Math.
**1963**, 15, 744–751. [Google Scholar] [CrossRef] - Manolopoulos, D.E.; May, J.C.; Down, S.E. Theoretical studies of the fullerenes: C
_{34}to C_{70}. Chem. Phys. Lett.**1991**, 181, 105–111. [Google Scholar] [CrossRef] - Manolopoulos, D.E.; Fowler, P.W. A fullerene without a spiral. Chem. Phys. Lett.
**1993**, 204, 1–7. [Google Scholar] [CrossRef] - Brinkmann, G. Problems and Scope of the Spiral Algorithm and Spiral Codes for Polyhedral Cages. Chem. Phys. Lett.
**1997**, 272, 193–198. [Google Scholar] [CrossRef] - Wirz, L.N.; Schwerdtfeger, P.; Avery, J.E. Naming Polyhedra by General Face-Spirals—Theory and Applications to Fullerenes and other Polyhedral Molecules. Fuller. Nanotub. Carbon Nanostruct.
**2017**. [Google Scholar] [CrossRef] - Schwerdtfeger, P.; Wirz, L.; Avery, J. Program Fullerene—A Software Package for Constructing and Analyzing Structures of Regular Fullerenes. Version 4.4. J. Comput. Chem.
**2013**, 34, 1508–1526. [Google Scholar] [CrossRef] [PubMed] - Brinkmann, G.; Dress, A.W.M. A constructive enumeration of fullerenes. J. Algorithms
**1997**, 23, 345–358. [Google Scholar] [CrossRef] - Brinkmann, G.; McKay, B.D. Fast generation of planar graphs. MATCH Commun. Math. Comput. Chem.
**2008**, 58, 323–357. [Google Scholar] - Brinkmann, G.; Franceus, D.; Fowler, P.W.; Graver, J.E. Growing fullerenes from seed: Growth transformations of fullerene polyhedra. Chem. Phys. Lett.
**2006**, 428, 386–393. [Google Scholar] [CrossRef] - Brinkmann, G.; Goedgebeur, J.; McKay, B.D. The Generation of Fullerenes. J. Chem. Inf. Model.
**2012**, arXiv:1207.701052, 2910–2918. [Google Scholar] [CrossRef] [PubMed] - Brinkmann, G.; Coolsaet, K.; Goedgebeur, J.; Mélot, H. House of Graphs: A database of interesting graphs. Discret. Appl. Math.
**2013**, 161, 311–314. Available online: http://hog.grinvin.org (accessed on 14 March 2018). [CrossRef] - Myrvold, W.; Bultena, B.; Daugherty, S.; Debroni, B.; Girn, S.; Minchenko, M.; Woodcock, J.; Fowler, P.W. FuiGui: A graphical user interface for investigating conjectures about fullerenes. MATCH Commun. Math. Comput. Chem.
**2007**, 58, 403–422. [Google Scholar] - Brinkmann, G.; Delgado Friedrichs, O.; Lisken, S.; Peeters, A.; Van Cleemput, N. CaGe—A Virtual Environment for Studying Some Special Classes of Plane Graphs—An Update. MATCH Commun. Math. Comput. Chem.
**2010**, 63, 533–552. [Google Scholar] - Kardoš, F.; Krnc, M.; Lužar, B.; Škrekovski, R. Cyclic 7-edge-cuts in fullerene graphs. J. Math. Chem
**2010**, 47, 771–789. [Google Scholar] [CrossRef] - Brinkmann, G.; McKay, B.D. Construction of planar triangulations with minimum degree 5. Discret. Math.
**2005**, 301, 147–163. [Google Scholar] [CrossRef] - Aldred, E.R.L.; Holton, D.A.; Jackson, B. Uniform cyclic edge connectivity in cubic graphs. Combinatorica
**1991**, 11, 81–96. [Google Scholar] [CrossRef] - McCuaig, W. Edge-reductions in cyclically k-connected cubic graphs. J. Combin. Theory Ser. B
**1992**, 56, 16–44. [Google Scholar] [CrossRef] - Coolsaet, K.; Fowler, P.W.; Goedgebeur, J. Generation and properties of nut graphs. arXiv, 2017; arXiv:1709.04254. [Google Scholar]
- Khaksari, A.; Hakimi-Nezhaad, M.; Ori, O.; Ghorbani, M. A survey of the automorphism groups of some fulleroids. Fuller. Nanotub. Carbon Nanostruct.
**2018**, 26, 80–86. [Google Scholar] [CrossRef] - Deza, M.; Fowler, P.W.; Rassat, A.; Rogers, K.M. Fullerenes as Tilings of Surfaces. J. Chem. Inf. Comput. Sci.
**2000**, 40, 550–558. [Google Scholar] [CrossRef] [PubMed] - Gan, L.-H.; Lei, D.; Fowler, P.W. Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes. J. Comput. Chem.
**2016**, 37, 1907–1913. [Google Scholar] [CrossRef] [PubMed] - Hernández, E.; Ordejón, P.; Terrones, H. Fullerene growth and the role of nonclassical isomers. Phys. Rev. B
**2001**, 63, 193403. [Google Scholar] [CrossRef] - Huang, J.Y.; Ding, F.; Jiao, K.; Yakobson, B.I. Real Time Microscopy, Kinetics, and Mechanism of Giant Fullerene Evaporation. Phys. Rev. Lett.
**2007**, 99, 175503. [Google Scholar] [CrossRef] [PubMed]

**Figure 11.**A polytope in ${\mathcal{P}}_{7,5}$, which cannot be obtained from a polytope in ${\mathcal{P}}_{\le 7,5}$ by a $(2,k)$-truncation or a connected sum with the 5-barrel.

**Figure 14.**(

**a**) An initial disk; (

**b**) the addition of belts; (

**c**) a construction of the complementary disk.

**Figure 15.**The first disk for the case ${p}_{7}=2$, ${p}_{k}=0$, $k\ge 8$. The second disk is drawn in Figure 14c.

**Figure 16.**(

**a**) A patch ${C}_{1}$; (

**b**) an operation inverse to a connected sum; (

**c**) a non-existing patch.

**Figure 19.**(

**a**) The 7-gon adjacent to two subsequent 5-gons; (

**b**) the patch ${D}_{2}$; (

**c**) the patch ${D}_{3}$.

**Figure 20.**(

**a**) The 7-gon adjacent to a 5-gon; (

**b**) the patch ${D}_{1}$; (

**c**) the case when ${F}_{b}$ is a 5-gon; (

**d**) the case when ${F}_{a}$ and ${F}_{c}$ are 5-gons.

**Figure 21.**(

**a**) The case when ${F}_{a}$ is a 5-gon and ${F}_{c}$ is a 6-gon; (

**b**) the patch ${D}_{1}$; (

**c**) the case when ${F}_{d}$ is a 5-gon.

**Figure 22.**(

**a**) The case when ${F}_{u}$ is a 5-gon; (

**b**) the case when ${F}_{u}$ is a 6-gon; (

**c**) the patch ${D}_{1}$.

**Figure 23.**(

**a**) Four 5-gons; (

**b**) ${F}_{p}$ and ${F}_{v}$ are 6-gons; (

**c**) ${F}_{p}$ and ${F}_{u}$ are 6-gons.

**Figure 24.**(

**a**) ${F}_{p}$ and ${F}_{v}$ are 6-gons; (

**b**) the patch ${D}_{2}$; (

**c**) the patch ${D}_{3}$.

**Figure 25.**(

**a**) ${F}_{p}$ and ${F}_{u}$ are 6-gons; (

**b**) ${F}_{w}$ is a 5-gon; (

**c**) ${F}_{t}$ is a 5-gon; (

**d**) ${F}_{w}$ is a 6-gon.

**Figure 27.**(

**a**) The beginning of the patch D; (

**b**) a transformation of a neighborhood of ${C}_{1}$; (

**c**) ${F}_{s}$ is a 5-gon; (

**d**) the straightening along the edge ${F}_{p}\cap {F}_{s}$.

**Figure 28.**(

**a**) ${F}_{s}$ is a 6-gon; (

**b**) ${F}_{r}$ and ${F}_{j}$ are 6-gons; (

**c**) the reduction of the patch ${D}_{2}$.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Erokhovets, N.
Construction of Fullerenes and Pogorelov Polytopes with 5-, 6- and one 7-Gonal Face. *Symmetry* **2018**, *10*, 67.
https://doi.org/10.3390/sym10030067

**AMA Style**

Erokhovets N.
Construction of Fullerenes and Pogorelov Polytopes with 5-, 6- and one 7-Gonal Face. *Symmetry*. 2018; 10(3):67.
https://doi.org/10.3390/sym10030067

**Chicago/Turabian Style**

Erokhovets, Nikolai.
2018. "Construction of Fullerenes and Pogorelov Polytopes with 5-, 6- and one 7-Gonal Face" *Symmetry* 10, no. 3: 67.
https://doi.org/10.3390/sym10030067