Modular Uniform Convexity of Lebesgue Spaces of Variable Integrability
Abstract
:1. Introduction
2. Modular Spaces
- for any ,
- for all and .
Modular Uniform Convexity
3. Lebesgue Spaces with Variable Exponent
4. Uniform Convexity
- (i)
- is uniformly convex;
- (ii)
- (iii)
- The modular satisfies the -condition. More precisely, there exists a positive constant K such that for any it holds that
5. Modular Uniform Convexity
6. Applications
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Orlicz, W. Über konjugierte Exponentenfolgen. Stud. Math. 1931, 3, 200–211. [Google Scholar] [CrossRef]
- Kováčik, O.; Rákosník, J. On spaces Lp(x),Wk,p(x). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar]
- Zhikov, V.V. On some variational problems. Rus. J. Math. Phys. 1997, 5, 105–116. [Google Scholar]
- Rajagopal, K.; Ruzicka, M. On the modeling of electrorheological materials. Mech. Res. Commun. 1996, 23, s401–s407. [Google Scholar] [CrossRef]
- Ruzicka, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics 1748; Springer: Berlin, Germany, 2000. [Google Scholar]
- Bansevicius, R.; Virbalis, J.A. Two-dimensional Braille readers based on electrorheological fluid valves controlled by electric field. Mechatronics 2007, 17, 570–577. [Google Scholar] [CrossRef]
- Chen, J.Z.; Liao, W.H. Design, testing and control of a magnetorheological actuator for assistive knee braces. Smart Mater. Struct. 2010, 19, 035029. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, S.; Kim, P.; Park, J.; Choi, S.B. A new visual feedback-based magnetorheological haptic master for robot-assisted minimally invasive surgery. Smart Mater. Struct. 2015, 24, 065015. [Google Scholar] [CrossRef]
- Spencer, B.; Yang, G.; Carlson, J.; Sain, M. “Smart” Dampers for Seismic Protection of Structures: A Full-Scale Study. In Proceedings of the Second World Conference on Structural Control, Kyoto, Japan, 28 June–1 July 1998. [Google Scholar]
- Khamsi, M.A.; Kozlowski, W. Fixed Point Theory in Modular Function Spaces; Birkäuser: Basel, Switzerland, 2015. [Google Scholar]
- Musielak, J. Orlicz Spaces and Modular Spaces; Lecture Notes in Mathematics, No. 1034; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Nakano, H. Topology of Linear Topological Spaces; Maruzen: Tokyo, Japan, 1951. [Google Scholar]
- Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics; Springer: Heidelberg, Germany, 2011; Volume 2017. [Google Scholar]
- Edmunds, D.E.; Lang, J.; Méndez, O. Differential Operators on Spaces of Variable Integrability; World Scientific: Singapore, 2014. [Google Scholar]
- Méndez, O.; Lang, J. Analysis on Function Spaces of Musielak–Orlicz Type; Taylor and Francis: Didcot, UK, 2018; in press. [Google Scholar]
- Nakano, H. Modulared Semi-Ordered Linear Spaces; Maruzen: Tokyo, Japan, 1950. [Google Scholar]
- Clarkson, J. Uniformly Convex Spaces. Trans. Am. Math. Soc. 1936, 40, 396–414. [Google Scholar] [CrossRef]
- James, R. Uniformly non-square Banach spaces. Ann. Math. 1964, 80, 542–550. [Google Scholar] [CrossRef]
- Lukeš, J.; Pick, L.; Pokorný, D. On geometric properties of the spaces Lp(x)(Ω). Rev. Mat. Complut. 2011, 24, 115–130. [Google Scholar] [CrossRef]
- Sundaresan, K. Uniform convexity of Banach spaces ℓ({pi}). Stud. Math. 1971, 39, 227–231. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachar, M.; Mendez, O.; Bounkhel, M. Modular Uniform Convexity of Lebesgue Spaces of Variable Integrability. Symmetry 2018, 10, 708. https://doi.org/10.3390/sym10120708
Bachar M, Mendez O, Bounkhel M. Modular Uniform Convexity of Lebesgue Spaces of Variable Integrability. Symmetry. 2018; 10(12):708. https://doi.org/10.3390/sym10120708
Chicago/Turabian StyleBachar, Mostafa, Osvaldo Mendez, and Messaoud Bounkhel. 2018. "Modular Uniform Convexity of Lebesgue Spaces of Variable Integrability" Symmetry 10, no. 12: 708. https://doi.org/10.3390/sym10120708
APA StyleBachar, M., Mendez, O., & Bounkhel, M. (2018). Modular Uniform Convexity of Lebesgue Spaces of Variable Integrability. Symmetry, 10(12), 708. https://doi.org/10.3390/sym10120708