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Abstract: We analyze the modular geometry of the Lebesgue space with variable exponent, Lp(·).
Our central result is that Lp(·) possesses a modular uniform convexity property. Part of the novelty
is that the property holds even in the case sup

x∈Ω
p(x) = ∞. We present specific applications to fixed

point theory.
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1. Introduction

In this work, we prove a hitherto unknown modular convexity property of the Lebesgue spaces
with variable exponent, Lp(·), which has far reaching applications in fixed point theory, remarkably
even in the case in which the exponent p(·) is unbounded.

Lebesgue spaces of variable-exponent (Lp(·)) were first mentioned in [1]. In the late 19th century
these spaces were brought into the center stage of mathematical research as they were realized to be
the natural solution space for partial differential equations exhibiting non-standard growth. The first
systematic treatment of variable exponent spaces was given in [2]. In 1997, while studying differential
equations in electromagnetism, V. Zhikov’s work [3] led to the minimization of integrals of the form∫

Ω

|∇w(x)|p(x)dx,

which in turn leads to the corresponding Lagrange-Euler equation:

∆p(·)w := div
(
|∇w|p(·)−2∇w

)
= 0. (1)

Because of the variability of p(x), Equation (1) is said to have non-standard growth. The natural space
for the solutions of such differential equations must take into consideration the dependence of p(x)
on the space variable x. It is at this point obvious that the classical Lp theory is not sufficient in this
situation and that a condition such as ∫

Ω

|∇u(x)|p(x)dx < ∞

should be imposed as an a priori requirement.
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Similar considerations arise in the study of the hydrodynamic equations governing
non-Newtonian fluids [4,5]. These equations have non-standard growth and model, in particular,
electrorheological fluids, i.e., fluids whose viscosity can be changed dramatically and in a few
mili-seconds when exposed to a magnetic or an electric field. Electrorheological fluids are currently
the object of intense research activity in both theoretical and applied fields. Their applications include
medicine, civil engineering and military science [6–9].

Through these applications, then, there inexorably emerged the need for a deeper understanding
of these generalized functional spaces with variable integrability.

The article is organized in the following manner: In Section 2 we give the definition of a convex
modular and introduce the definition of the UUC2 condition. In Section 3 we lay the ground for
our main result by properly defining the Lebesgue spaces with variable integrability. In Section 4,
Theorem 3, which constitutes the main contribution of this work, is proved and in Section 5 we
present applications.

2. Modular Spaces

In the present section we introduce the standard definitions and terminology on modular spaces
to be used in the sequel. We also state the concept of modular uniform convexity. For a detailed
account of the ideas expounded here, the interested reader is referred to the monograph [10]. Let V be
a real or complex vector space. We denote the scalar field with K.

Definition 1. An s-convex modular (0 < s ≤ 1) on a vector space V over K is a function

ρ : V −→ [0, ∞]

that satisfies the following conditions:

1. ρ(x) = 0 ⇐⇒ x = 0,
2. ρ(tx) = |t|ρ(x) for any x ∈ V, |t| = 1,
3. ρ(tx + (1− t)y) ≤ tsρ(x) + (1− t)sρ(y) for all x, y ∈ V and t ∈ (0, 1].

In particular, if s = 1, the modular is said to be convex. A convex modular ρ on a vector space V is left-
continuous (right- continuous) if for any x ∈ V the map

α −→ ρ(αx)

is left- continuous (right-continuous) on [0, ∞) (or, on (0, ∞) in the case of left continuity); if ρ is both left- and
right-continuous, it is said to be continuous.

If ρ satisfies conditions (1) and (2) but not necessarily condition (1), it is said to be a semimodular
on V. By reason of its relevance to the present work, the following standard example is noted: Consider
a domain Ω ⊆ Rn and setM to denote the vector space of all Borel-measurable real-valued functions
on Ω. Then, the functional

u −→ ρ∞(u) =

{
0, if u is bounded a.e.,

∞, otherwise,
(2)

is a semimodular onM. The following definition is standard [11,12]:

Definition 2. Let V be a real vector space and ρ be a convex modular on V. ρ is said to be uniformly convex if
for each ε > 0 there exists δ = δ(ε) > 0 such that, for every u ∈ V and v ∈ V with ρ(u) = 1, ρ(v) = 1 and
ρ(u− v) > ε, it holds that ρ

( u+v
2
)
< 1− δ(ε).
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Modular Uniform Convexity

A less stringent form of modular uniform convexity was introduced and studied in [10].
Specifically,

Definition 3. Let V be a real vector space and ρ be a convex modular on V. Let r > 0, ε > 0. Set

D(r, ε) =

{
(u, v) ∈ V ×V : ρ(u) ≤ r , ρ(v) ≤ r , ρ

(
u− v

2

)
≥ εr

}
(3)

and

δ(r, ε) = inf
{

1− 1
r

ρ

(
u + v

2

)
: (u, v) ∈ D(r, ε)

}
. (4)

If D(r, ε) = ∅, we define δ(r, ε) = 1. Notice that for ε > 0 that is small enough, D(r, ε) 6= ∅.

Definition 4. The modular ρ is said to be UUC2 (or type 2-uniformly convex, xsee [10]) if for each s ≥ 0,
ε > 0, there exists η(s, ε) > 0 such that for arbitrary r > s > 0

δ(r, ε) > η(s, ε).

3. Lebesgue Spaces with Variable Exponent

In what follows, we delve into the question of uniform convexity of the Lebesgue spaces of
variable exponent. We start by stating the basic definitions ([2,13–15]). Given a domain Ω ⊂ Rn,M(Ω)

will stand for the vector space of all real-valued, Borel-measurable functions defined on Ω. We will
denote by P(Ω) the subset ofM that consists of all functions

p : Ω −→ [1, ∞].

As usual, if A is a Borel set A ⊂ Rn, its Lebesgue measure will be written as |A|.
Fix such a function p, define the sets:

Ω0 = {x ∈ Ω : 1 < p(x) < ∞} ,

Ω1 = {x ∈ Ω : p(x) = 1} ,

Ω∞ = {x ∈ Ω : p(x) = ∞} ,

and set

p− = ess inf
x∈Ω0

p(x) and p+ = ess sup
x∈Ω0

p(x) if
∣∣∣Ω0

∣∣∣ > 0.

Theorem 1. The function

ρp :M(Ω) −→ [0, ∞],

ρp(u) =
∫

Ω0∪Ω1

|u(x)|p(x)dµ + sup
x∈Ω∞

|u(x)|,

defines a convex, continuous modular onM(Ω).

Proof of Theorem 1. See [2,14].

On the subspace V ofM(Ω) defined as

V =
{

v ∈ V : ∃λ > 0 : ρp(λv) < ∞
}

,
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the functional
‖u‖p = inf

{
λ > 0 : ρp(λ

−1u) ≤ 1
}

(5)

is a norm; it is called the Luxemburg norm. Furnished with the Luxemburg norm, V becomes a Banach
space. In particular, if the function p is constant, this space coincides with the Lebesgue space Lp.
For this reason, V is called the Lebesgue space of variable exponent or of variable integrability and
denoted by Lp(·)(Ω).

To the author’s best knowledge, the first reference to the modular given in Theorem 1 is to be
found in the work by Orlicz [1]. We refer the reader to [2,13,14] for a systematic treatment of the
variable exponent Lebesgue spaces. Notice that if |Ω0| = |Ω1| = 0, then ρp = ρ∞.

We point out in passing that Lp(·)(Ω) is the Musielak-Orlicz space corresponding to the
Musielak-Orlicz function

ϕ : Ω× [0, ∞) −→ [0, ∞)

ϕ(x, t) = tp(x).

These spaces were introduced by Nakano in 1950 [16]; we refer to the surveys [11,13,15] for more
detailed information on this vast topic.

If p is constant in Ω, the modular ρp is simply the pth power of the Luxemburg norm (5). For this
reason, when working whether with the norm or with the modular, one faces essentially the same
technicalities. If p is non-constant, however, the situation changes radically. In this case, the handling
of the norm presents technical challenges and its often desirable to work with the modular whenever
possible. This is especially true when dealing with uniform convexity.

4. Uniform Convexity

We recall the following standard definition: a normed space (X, ‖ · ‖) is defined to be uniformly
convex iff given any ε : 0 < ε ≤ 2 one has

δX(ε) = inf
{

1−
∥∥∥∥ x + y

2

∥∥∥∥ : ‖x‖ ≤ 1 , ‖y‖ ≤ 1 , ‖x− y‖ ≥ ε

}
> 0.

The number δX(ε) is known as the modulus of uniform convexity of X (see, for example, [17,18]). For
the variable exponent spaces Lp(·)(Ω), uniform convexity is fully characterized. The reader is referred
to [14,19] for the proof of the next Theorem. Notice that it follows that the uniform convexity of the
Luxemburg normnin expression (5) is equivalent to the ∆2-condition.

Theorem 2. The following statements are equivalent for any function p ∈ P(Ω):

(i) Lp(·)(Ω) is uniformly convex;
(ii) 1 < p− ≤ p+ < ∞;

(iii) The modular ρp satisfies the ∆2-condition. More precisely, there exists a positive constant K such that for
any v ∈ Lp(·)(Ω) it holds that ρp(2v) ≤ Kρp(v).

5. Modular Uniform Convexity

Though it follows from Theorem 2 that there is no hope for norm-uniform convexity of Lp(·)(Ω)

if the exponent p is unbounded, we will show in this section that even when p+ = ∞, the modular ρp

still exhibits the uniform-convexity property UUC2 introduced in Definition 3. As will be discussed in
Section 6, this property has far-reaching implications.

To tackle the modular uniform convexity property aim, the following auxiliaries inequalities are
necessary:

Lemma 1. Let a, b, p ∈ R. Then:
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(i) If p ≥ 2 [17], it holds that ∣∣∣∣ a + b
2

∣∣∣∣p + ∣∣∣∣ a− b
2

∣∣∣∣p ≤ 1
2

(
|a|p + |b|p

)
.

(ii) If 1 < p ≤ 2 and |a|+ |b| 6= 0 [20], then∣∣∣∣ a + b
2

∣∣∣∣p + p(p− 1)
2

∣∣∣∣ a− b
|a|+ |b|

∣∣∣∣2−p ∣∣∣∣ a− b
2

∣∣∣∣p ≤ 1
2

(
|a|p + |b|p

)
.

A detailed proof of (ii) is given in [15].
We next set out to state and prove Theorem 3, which is the central aim of this article.

Theorem 3. Let Ω ⊆ Rn be open and p ∈ P(Ω). If |Ω∞| = 0 and p− > 1 then the modular

ρp : Lp(Ω) −→ [0, ∞),

ρp(w) =
∫

Ω
|w(x)|p(x)dx

satisfies the UCC2 condition.

Remark 1. The condition |Ω∞| = 0 cannot be removed, as it is easily shown that L∞(Ω) does not have the
UUC2 property if |Ω| > 0.

Proof of Theorem 3. Fix a domain Ω ⊆ Rn and p ∈ P(Ω); let ρp be as in Theorem 1.
Let r > 0, ε > 0 and consider u, v ∈ D(r, ε), that is, assume that

ρp(u) ≤ r , ρp(v) ≤ r , ρp

(
u− v

2

)
≥ εr.

On account of the convexity of ρp we have ε ≤ 1: indeed,

rε ≤ ρp

(
u− v

2

)
≤ r.

Let Ω1 := {x ∈ Ω : p(x) ≥ 2}. Then, either

∫
Ω1

∣∣∣∣u(x)− v(x)
2

∣∣∣∣p(x)
dx ≥ rε

2
(6)

or ∫
Ω\Ω1

∣∣∣∣u(x)− v(x)
2

∣∣∣∣p(x)
dx ≥ rε

2
. (7)

If inequality (6) holds, one has, by virtue of inequality (i) in Lemma 1:

∫
Ω1

∣∣∣∣u(x)− v(x)
2

∣∣∣∣p(x)
dx +

∫
Ω1

∣∣∣∣u(x) + v(x)
2

∣∣∣∣p(x)
dx

≤ 1
2

∫
Ω1

|u(x)|p(x)dx +
∫

Ω1

|v(x)|p(x)dx

 .
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It is thus concluded that, in this case,

∫
Ω1

∣∣∣∣u(x) + v(x)
2

∣∣∣∣p(x)
dx ≤ 1

2

∫
Ω1

|u(x)|p(x)dx +
∫

Ω1

|v(x)|p(x)dx

− rε

2
.

Thus,

ρp

(
u + v

2

)
=
∫

Ω1

∣∣∣∣u(x) + v(x)
2

∣∣∣∣p(x)
dx +

∫
Ω\Ω1

∣∣∣∣u(x) + v(x)
2

∣∣∣∣p(x)
dx

≤ 1
2

∫
Ω1

|u(x)|p(x)dx +
∫

Ω1

|v(x)|p(x)dx

− rε

2

+
1
2

 ∫
Ω\Ω1

|u(x)|p(x)dx +
∫

Ω\Ω1

|v(x)|p(x)dx


=

1
2
(
ρp(u) + ρp(v)

)
− rε

2

≤ r
(

1− ε

2

)
.

On the other hand, if inequality (7) holds, we define

Ω2 :=
{

x ∈ Ω \Ω1 : |u(x)− v(x)| ≤ ε

4
(|u(x)|+ |v(x)|)

}
.

With this notation, it follows that

∫
Ω2

∣∣∣∣u(x)− v(x)
2

∣∣∣∣p(x)
dx ≤ ε

8

∫
Ω2

|u(x)|p(x)dx +
∫

Ω2

|v(x)|p(x)


≤ ε

8
(
ρp(u) + ρp(u)

)
≤ rε

4
.

The validity of statement (7) implies in particular that

∫
Ω\(Ω1∪Ω2)

∣∣∣∣u(x)− v(x)
2

∣∣∣∣p(x)
=

∫
Ω\Ω1

∣∣∣∣u(x)− v(x)
2

∣∣∣∣p(x)
−
∫

Ω2

∣∣∣∣u(x)− v(x)
2

∣∣∣∣p(x)

≥ rε

2
− rε

4
=

rε

4
.

It follows from inequality (ii) in Lemma 1 that, if x ∈ Ω \ (Ω1 ∪Ω2), one has∣∣∣∣u(x) + v(x)
2

∣∣∣∣p(x)
+ (p− − 1)

ε

8

∣∣∣∣u(x)− v(x)
2

∣∣∣∣p(x)

≤
∣∣∣∣u(x) + v(x)

2

∣∣∣∣p(x)
+

p(x)(p(x)− 1)
2

( ε

4

)2−p(x)
∣∣∣∣u(x)− v(x)

2

∣∣∣∣p(x)

≤
∣∣∣∣u(x) + v(x)

2

∣∣∣∣p(x)
+

p(x)(p(x)− 1)
2

∣∣∣∣ u(x)− v(x)
|u(x)|+ |v(x)|

∣∣∣∣2−p(x) ∣∣∣∣u(x)− v(x)
2

∣∣∣∣p(x)

≤ 1
2
(|u(x)|p(x) + |v(x)|p(x)).
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Integrating the last inequality over Ω \ (Ω1 ∪Ω2) , it is easily concluded that

∫
Ω\(Ω1∪Ω2)

∣∣∣∣u(x) + v(x)
2

∣∣∣∣p(x)
dx + (p− − 1)

ε

8

∫
Ω\(Ω1∪Ω2)

∣∣∣∣u(x)− v(x)
2

∣∣∣∣p(x)
dx

≤ 1
2

 ∫
Ω\(Ω1∪Ω2)

|u(x)|p(x)dx +
∫

Ω\(Ω1∪Ω2)

|v(x)|p(x)dx

 .

We arrive thus at

∫
Ω\(Ω1∪Ω2)

∣∣∣∣u(x) + v(x)
2

∣∣∣∣p(x)
dx

≤ 1
2

 ∫
Ω\(Ω1∪Ω2)

|u(x)|p(x)dx +
∫

Ω\(Ω1∪Ω2)

|v(x)|p(x)dx

− (p− − 1)
ε2

32
r.

In all

ρp

(
u + v

2

)
=

∫
Ω1∪Ω2

∣∣∣∣u(x) + v(x)
2

∣∣∣∣p(x)
dx +

∫
Ω\(Ω1∪Ω2)

∣∣∣∣u(x) + v(x)
2

∣∣∣∣p(x)
dx

≤ 1
2

 ∫
Ω1∪Ω2

|u(x)|p(x)dx +
∫

Ω1∪Ω2

|v(x)|p(x)dx



+
1
2

∫
Ω\(Ω1∪Ω2)

|u(x)|p(x)dx +
∫

Ω\Ω1∪Ω2

|v(x)|p(x)dx


− (p− − 1)

ε2

32
r

≤ r− (p− − 1)
ε2

32
r = r

(
1− (p− − 1)

ε2

32

)
.

We conclude that, for any r > 0, ε > 0 and arbitrary u, v ∈ D(r, ε) as specified in Definition 3,
it holds that

1− 1
r

ρp

(
u + v

2

)
≥ min

{
ε

2
, (p− − 1)

ε2

32

}
> 0,

and it is concluded by definition that Lp(·)(Ω) is UUC2.

6. Applications

A remarkable fact about the above discussion is that the UUC2 property holds even if p+ =

sup
x∈Ω

p(x) = ∞, that is, in the absence of the ∆2 condition. This observation makes the UUC2 condition

a valuable tool for dealing with certain applications that have been hitherto heavily ∆2-dependent.
For an exhaustive treatment of the interplay between modular spaces and fixed point theory, we refer
the reader to the monograph [10].

Norm convergence is equivalent to modular convergence in Lp(·)(Ω) if and only if ρp fulfills the
∆2 condition [13,15]. Bearing this fact in mind, we introduce some terminology before proceeding any
further: a subset W ∈ Lp(·)(Ω) will be called ρp-bounded if, for some constant C ≥ 0 and any u ∈W,
the inequality

ρp(u) ≤ C
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holds. W is said to be ρp-closed if whenever

un
ρp→ u

one has u ∈W. Notice that, if p+ = ∞, then ρ-closedness and ρ-boundedness are strictly weaker than
norm-closedness and norm-boundedness, respectively.

The next observation is of particular importance in the sequel. Let u ∈ Lp(·)(Ω), v ∈ Lp(·)(Ω) and
let (vn) be ρp-convergent to v. Fatou’s Lemma yields the following inequality

ρp(u− v) ≤ lim inf
n→∞

ρp(u− vn).

For obvious reasons, the above is known as the Fatou property of the modular ρp.

Theorem 4. Let p : Ω −→ (1, ∞); assume p− = inf
x∈Ω

p(x) > 1. Let W ⊂ Lp(·)(Ω) be convex and ρp-closed

and u ∈ Lp(·)(Ω) satisfy
dρp(u, W) = inf

{
ρp(u− v) : v ∈W

}
< ∞. (8)

Then, there exists a unique v0 ∈W for which

dρp(u, W) = ρp(u− v0).

Proof of Theorem 4. One can clearly assume that u /∈W, otherwise there is nothing to prove. Under
this assumption, one must have d(u, W) > 0, due to the ρp-closedness of W. Let (vn) ⊆W be such that

ρp(u− vn) < d(u, W)

(
1 +

1
n

)
.

Then, the sequence
( vn

2
)

must be ρp-Cauchy, i.e., it must necessarily hold that ρp(2−1(vn − vm))→ 0
as m, n → ∞. The latter follows by contradiction. Indeed, if otherwise, there would exist δ > 0 and
strictly increasing subsequences (nk)k≥1 and (mk)k≥1 with nk > mk for every k such that

ρp

(
vnk − vmk

2

)
≥ δ (9)

for each k ∈ N. Since nk > mk, it would then hold that

max{ρp(u− vnk ), ρp(u− vmk )} ≤ d(u, W)

(
1 +

1
mk

)
:= rk.

Together with the bound (9) and in by virtue of Definitions (3) and (4) and of Theorem 1, there exists
η > 0 such that

1− 1
rk

ρp

(
u−

(vmk + vnk )

2

)
≥ η > 0,

for any k ∈ N. Though not mentioned explicitly there, the proof of Theorem 1 contains the fact that η

is independent rk. Since W is convex by assumption, the last inequality above yields

d(u, W) ≤ ρp

(
u−

(vmk + vnk )

2

)
≤ r(1− η)

= d(u, W)

(
1 +

1
mk

)
(1− η).
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Letting k tend to ∞ one clearly reaches a contradiction: in conclusion, the sequence
( vn

2
)

is ρp-Cauchy,
as claimed. Since Lp(·)(Ω) is ρp-complete, we define v as

lim
n→∞

ρp(v− 2−1vn) = 0.

Notice that
ρp

(
2v−

(
v +

vk
2

))
→ 0 as k→ ∞;

for fixed k ∈ N,
(

vk+vn
2

)
n

converges to vk
2 + v. The convexity and ρp-closedness of W imply then that

vk
2 + v ∈W for each k and invoking again the closedness of W we conclude that 2v ∈W. On account

of the Fatou’s property for the modular ρp, one concludes that

d(u, W) ≤ ρp(u− 2v) ≤ lim inf
k→∞

ρp

(
u−

(
v +

vk
2

))
≤ lim inf

n→∞
lim inf

k→∞
ρp

(
u−

(
vn + vk

2

))
≤ lim inf

n→∞
lim inf

k→∞

1
2
(
ρp(u− vn) + ρp(u− vk)

)
= d(u, W).

It follows that
d(u, W) = ρp(u− 2v).

If w ∈W and d(u, W) = ρp(u− w), it is therefore concluded that

d(u, W) ≤ ρp

(
u− 2v + w

2

)
≤ 1

2
(
ρp(u− 2v) + ρp(u− w)

)
= d(u, W).

Since ρp has the UUC2 property, it is strictly convex. Hence, w = 2v, which yields the
uniqueness statement.

It should be emphasized at this point that Theorem 4 can be restated as the following
minimization result:

Theorem 5. In the notation and under the hypotheses of Theorem 4, there exists a unique solution u0 ∈W to
the minimization problem

inf
u−w∈W

∫
Ω

|w(x)|p(x)dx (10)

(notice here that u ∈ Lp(·)(Ω)).

Proof of Theorem 5. It is immediate from Theorem 4 that the unique solution is given by
w = u− v0.

Aiming at presenting further applications of the UUC2 property for Lp(·)(Ω), we state and prove
Theorem 6:

Theorem 6. Consider a non-increasing sequence (Cn)n of ρp-closed, convex, nonempty subsets of Lp(·)(Ω)

and assume that
p− > 1.
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Suppose that for some v ∈ Lp(·)(Ω) it holds that sup
n≥1

d(v, Cn) < ∞. Then,

∞⋂
n=1

Cn 6= ∅.

Proof of Theorem 6. It is sufficient to assume that, for some n0 ∈ N, it holds that v /∈ Cn0 ; otherwise
there would be nothing to prove. From the ρp-closedness of Cn0 , it is easily derived that d(v, Cn0) > 0.
Since the sequence (Cn)n is non-increasing by assumption, the inequalities

∞ > sup
n≥1

d(v, Cn) ≥ d(v, Cn) = inf
u∈Cn

d(v, u) ≥ inf
u∈Cn−1

d(v, u) = d(v, Cn−1)

are clear for any n > 1. Thus, the sequence d(v, Cn) is non-decreasing and bounded. Let L =

limn→∞ d(v, Cn) < ∞; clearly L > 0. For each n ∈ N, let un ∈ Cn be chosen so that ρp(v − un) =

d(v, Cn). As in Theorem 4, one can prove that the sequence
( un

2
)

n is ρp-Cauchy in Lp(·)(Ω) and hence
it ρp-converges to, say, u/2 ∈ Lp(·)(Ω). Fix k ∈ N. Then, the sequence

( un
2
)

n≥k is contained in Ck and
ρp-converges to u

2 , which implies that u
2 ∈ Ck, since Ck is ρp-closed. In conclusion,

u
2
∈

∞⋂
n=1

Cn,

i.e.,
∞⋂

n=1
Cn 6= ∅, as claimed.

To facilitate the proof of the following theorem, we recall the following:

Definition 5. A family (Ci)i∈I of sets is said to have the finite intersection property if for every finite subset

{i1, ...ik} ⊂ I it holds that
k⋂

j=1
Cij 6= ∅.

Theorem 7. Assume that p− > 1 and suppose that ∅ 6= C ⊂ Lp(·)(Ω) is a ρp-closed, ρp-bounded, convex set,
then if let (Ci)i∈I ⊂ 2C is a family of subsets of C having the finite intersection property, it necessarily holds that⋂

i∈I
Ci 6= ∅.

Proof of Theorem 7. C is ρp-bounded; it is therefore immediate that, for any u ∈ C and i ∈ I,

d(u, Ci) = inf
v∈Ci

ρp(u− v) ≤ sup
v∈C

ρp(u− v) < ∞.

For any finite subset A ⊂ I, let

dA = d

u,
⋂
j∈A

Cj

 .

Notice that if A and B are finite subsets of I and if A ⊆ B, then
⋂

j∈B
Cj ⊆

⋂
j∈A

Cj. Consequently,

d

u,
⋂
j∈A

Cj

 = inf
v∈∩j∈ACj

ρp(u, v) ≤ inf
v∈∩j∈BCj

ρp(u, v),
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i.e., dA ≤ dB. Write

dI = sup

d

u,
⋂
i∈J

Ci

 J ⊂ I : and
⋂
i∈J

Ci 6= ∅

 .

Let (An) be the sequence defined by

dI −
1
n
< dAn ≤ dI .

Write Bn =
n⋃

k=1
Ak and J =

∞⋃
n=1

Bn. It is clear then that, for each n ∈ N, the set
⋂

i∈Bn

Ci is ρp-closed,

convex and non-empty and that the sequence

( ⋂
i∈Bn

Ci

)
is non-increasing. Hence, Theorem 6 applies

and we have
S =

⋂
i∈J

Ci 6= ∅.

By definition, for each n ∈ N, it holds that ⋂
i∈J

Ci ⊆
⋂

i∈An

Ci,

and it follows that for each n one has

dI −
1
n
< dAn ≤ d(u, S) ≤ dI .

Thus, d(u, S) = dI . On account of Theorem 4, there exists a unique z ∈ S which satisfies ρp(u− z) = dI
and, therefore, for any index i0 ∈ I, one has

S ⊇ S ∩ Ci0 =
⋂

i∈J∪{i0}
Ci 6= ∅;

it is seen immediately that dI ≤ d(u, S) ≤ d(u, S ∩ Ci0) ≤ dI . In all,

d(u, S) = d(u, S ∩ Ci0)

and by Theorem 4 there exists a unique w ∈ S ∩ Ci0 for which

ρp(u− w) = d(u, S ∩ Ci0) = dI .

In particular, w ∈ S, thus, invoking the uniqueness part of Theorem 4, one must necessarily have
w = z. Since i0 is arbitrary, it is concluded that z ∈ ⋂

i∈I
Ci and hence the latter intersection is non-empty,

as claimed.

The following theorem is another consequence of the UUC2 property for Lp(·)(Ω).

Theorem 8. Let p− > 1, ∅ 6= C ⊂ Lp(·)(Ω) be a convex, ρp-closed, ρp bounded and assume that C is not a
singleton (i.e., C at least two distinct points). Then, there exists u ∈ C for which

sup
v∈C

ρp(u− v) < diam(C),

where as usual diam(C) = sup
a,b∈C

ρp(a− b) stands for the ρp-diameter of C.
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The property established in Theorem 8 is commonly referred to as the ρp-normal structure property.
Theorem 8 can thus be rephrased as asserting that, if p− > 1, then Lp(·)(Ω) has ρp-norma structure.

Proof of Theorem 8. The assumptions imply that δ(C) > 0 and that there exist two distinct points
u ∈ C, v ∈ C, u 6= v. For any w ∈ C, invoking the UUC2 property, it follows at once that, for δ as in
the definition of UUC2, (Definition (3)),

ρp

(
u + v

2
− w

)
= ρp

(
u− w + v− w

2

)
≤ diam(C)

(
1− δ

(
diam(C),

ε

diam(C)

))
.

The arbitrariness of w in concert with the convexity of C yields the claim.

Theorem 9. If p− > 1 and ∅ 6= C ⊂ Lp(·)(Ω) is convex, ρp-closed and ρp-bounded, it follows that any map

T : C −→ C

for which the bound
ρp (T(u)− T(v)) ≤ ρp (u− v)

holds for any u ∈ C, v ∈ C, has a fixed point. In other words, under the above conditions, there exists w ∈ C
such that

T(w) = w.

Proof of Theorem 9. It is obvious that the theorem is true if C is a singleton. Thus, it can be assumed
that the cardinality of C is at least 2. Let

F =
{

∅ 6= K ⊂ C : K is ρp-closed and T(K) ⊆ K
}

.

Since C ∈ F , F 6= ∅. Moreover, F is partially ordered by the order relation

X ≤ Y ⇐⇒ Y ⊆ X.

If G is a totally order subfamily of F , then G possesses the finite intersection property and, on account
of Theorem 7, it follows that ⋂

X∈G
X 6= ∅;

this clearly implies that
⋂

X∈G
X ∈ F , hence

⋂
X∈G

X is an upper bound for G.

Zorn’s Lemma yields the existence of a maximal element X0 ∈ F . We set about to prove that X0

contains exactly one point. Denote the intersection of all ρp-closed, convex subsets of C that contain
T(X0) by convρp (T(X0)). In particular, since X0 ∈ F ,

convρp (T(X0)) ⊆ X0.

On the other hand, the set convρp (T(X0)) belongs to F because it is convex, ρp-closed and it holds that

T (convρp (T(X0))) ⊆ T(X0) ⊆ convρp (T(X0)) .

As a consequence of the maximality of X0 with respect to the indicated inclusion, one has

convρp (T(X0)) = X0. (11)
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Theorem 8 yields the existence of an element x0 ∈ X0 such that

r0 = sup
u∈X0

ρp(x0 − u) < diam(X0). (12)

Let Bρp(a, s) denote the ρp-ball of radius s centered at a; we remark the obvious fact that the convexity
and the Fatou property of the modular ρp imply that Bρp(a, s) is ρp-closed and convex. Set

M =
⋂

v∈X0

Bρp(v, r0) ∩ X0 =

{
u ∈ X0 : sup

v∈X0

ρp(u− v) ≤ r0

}
;

then, M is ρp-closed and convex and M ⊂ X0. Moreover, if x ∈ M, then for any v ∈ X0

ρp (T(x)− T(v)) ≤ ρp (x− v) ≤ r0.

In other words, if v ∈ X0, ρp(T(v) − T(x)) ≤ r0, i.e., T(X0) ⊆ Bρp(T(x), r0). By definition of
convρp (T(X0)) , it is plain that:

convρp (T(X0)) ⊆ Bρp(T(x), r0);

from equality (11), it follows that

X0 = convρp (T(X0)) ⊆ Bρp(T(x), r0);

that is, for any v ∈ X0, ρp(T(x)− v) ≤ r0, i.e., T(x) ∈ Bρp(v, r0). It is clear that, by definition of M,

T(M) ⊆ M,

so that M ∈ F and, since M ⊆ X0 and X0 is maximal, one has a fortiori:

X0 = M.

By definition, then, if w ∈ X0,
ρp(w− x0) ≤ r0;

this forces the inequality diam(X0) ≤ r0, which contradicts the strict inequality (12) unless diam(X0) =

0. Hence, diam(X0) = 0 and X0 = {a} is a singleton. Since also T(X0) ⊆ X0, necessarily

T(a) = a.

In conclusion, T has a fixed point.

7. Conclusions

The main results in this work can be summarized as follows: Theorem 3 asserts that, if p− > 1,
then the variable exponent space Lp(·)(Ω) has the UUC2 property.

It follows from Theorem 7 that, if p− > 1 and C ⊂ Lp(·)(Ω) is a nonempty, ρp-closed, ρp-bounded,
convex set, then any family of subsets of C that has the finite intersection property has nonempty
intersection.

In Theorem 9, it is proved that, if p− > 1, then any non-expansive map T on a nonempty, ρp-closed,
ρp-bounded, convex subset of Lp(·)(Ω) has a fixed point.

Author Contributions: All authors contributed equally to this article.

Funding: This research was funded by Deanship of Scientific Research at King Saud University, Grant No.
RG-1435-079.



Symmetry 2018, 10, 708 14 of 14

Acknowledgments: The authors would like to express their deep appreciation to the Deanship of Scientific
Research at King Saud University for supporting this Research group No. (RG-1435-079). The authors profusely
thank the referees for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Orlicz, W. Über konjugierte Exponentenfolgen. Stud. Math. 1931, 3, 200–211. [CrossRef]
2. Kováčik, O.; Rákosník, J. On spaces Lp(x), Wk,p(x). Czechoslov. Math. J. 1991, 41, 592–618.
3. Zhikov, V.V. On some variational problems. Rus. J. Math. Phys. 1997, 5, 105–116.
4. Rajagopal, K.; Ruzicka, M. On the modeling of electrorheological materials. Mech. Res. Commun. 1996,

23, s401–s407. [CrossRef]
5. Ruzicka, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics 1748;

Springer: Berlin, Germany, 2000.
6. Bansevicius, R.; Virbalis, J.A. Two-dimensional Braille readers based on electrorheological fluid valves

controlled by electric field. Mechatronics 2007, 17, 570–577. [CrossRef]
7. Chen, J.Z.; Liao, W.H. Design, testing and control of a magnetorheological actuator for assistive knee braces.

Smart Mater. Struct. 2010, 19, 035029. [CrossRef]
8. Choi, S.H.; Kim, S.; Kim, P.; Park, J.; Choi, S.B. A new visual feedback-based magnetorheological haptic

master for robot-assisted minimally invasive surgery. Smart Mater. Struct. 2015, 24, 065015. [CrossRef]
9. Spencer, B.; Yang, G.; Carlson, J.; Sain, M. “Smart” Dampers for Seismic Protection of Structures: A Full-Scale

Study. In Proceedings of the Second World Conference on Structural Control, Kyoto, Japan, 28 June–1
July 1998.

10. Khamsi, M.A.; Kozlowski, W. Fixed Point Theory in Modular Function Spaces; Birkäuser: Basel,
Switzerland, 2015.

11. Musielak, J. Orlicz Spaces and Modular Spaces; Lecture Notes in Mathematics, No. 1034; Springer:
Berlin/Heidelberg, Germany, 1983.

12. Nakano, H. Topology of Linear Topological Spaces; Maruzen: Tokyo, Japan, 1951.
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