# Path Loss Model for Outdoor Parking Environments at 28 GHz and 38 GHz for 5G Wireless Networks

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Measurement Setup and Procedure

## 3. Path Loss Model for Single Frequency

_{c}. In trying to estimate path loss models, it is necessary to test for model accuracy and other path loss model parameters. Engineers will inevitably need to calculate the propagation models when designing new applications and factors like distance estimation or any other unforeseen scenarios (i.e., original forecasted or predicted in the experimental model used to determine path the loss model). Researchers are still conducting several field measurements to ensure that modeled system is stable, accurate and useful. In this paper, the 5G channel was characterized based on different path loss models for parking lot case study. Propagation path loss can be modeled using the close-in (CI) free space reference distance path loss model provided in Equation 2 with the single model parameter path loss exponent (PLE) (n):

_{0}is a physical reference distance.

## 4. Proposed Path Loss Model

_{f}can also be expressed in matrix form as:

^{T}operator represents the transpose of the column vector.

## 5. Path Loss Model for Multi-Frequency

_{0}set to 1 GHz). The ABG model equation is given as [34]:

## 6. Results and Discussions

#### Path Loss Models Results

_{f}, for CI and PLM respectively. The FI path loss model has two parameters (α and β) which were estimated by MMSE. The computation complexity of ABG model was the highest one, where three parameters (α, β and ϒ) needed to be estimated using MMSE. In conclusion, the complexity of FI and ABG models are two and three times more than the complexity of PLM and CI models, respectively.

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H.; et al. Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag.
**2014**, 52, 26–35. [Google Scholar] [CrossRef] - Al-Samman, A.M.; Rahman, T.A.; Azmi, M.H.; Hindia, M.N.; Khan, I.; Hanafi, E. Statistical modelling and characterization of experimental mm-wave indoor channels for future 5G wireless communication networks. PLoS ONE
**2016**, 11, e0163034. [Google Scholar] [CrossRef] [PubMed] - Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter-wave cellular wireless networks: Potentials and challenges. Proc. IEEE
**2014**, 102, 366–385. [Google Scholar] [CrossRef] - Gupta, A.; Jha, R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access
**2015**, 3, 1206–1232. [Google Scholar] [CrossRef] - Katsinis, G.; Tsiropoulou, E.E.; Papavassiliou, S. Joint resource block and power allocation for interference management in device to device underlay cellular networks: A game theoretic approach. Mob. Netw. Appl.
**2017**, 22, 539–551. [Google Scholar] [CrossRef] - Shen, X. Device-to-device communication in 5G cellular networks. IEEE Netw.
**2015**, 29, 2–3. [Google Scholar] [CrossRef] - Tehrani, M.N.; Uysal, M.; Yanikomeroglu, H. Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Commun. Mag.
**2014**, 52, 86–92. [Google Scholar] [CrossRef] - Tsiropoulou, E.E.; Mitsis, G.; Papavassiliou, S. Interest-aware energy collection & resource management in machine to machine communications. Ad. Hoc. Networks
**2018**, 68, 48–57. [Google Scholar] [CrossRef] - Cero, E.; Baraković Husić, J.; Baraković, S. IoT’s tiny steps towards 5G: Telco’s perspective. Symmetry
**2017**, 9, 213. [Google Scholar] [CrossRef] - Chiu, W.; Su, C.; Fan, C.; Chen, C.; Yeh, K.H. Authentication with what you see and remember in the internet of things. Symmetry
**2018**, 10, 537. [Google Scholar] [CrossRef] - Parada, R.; Cárdenes-Tacoronte, D.; Monzo, C.; Melià-Seguí, J. Internet of Things Area Coverage Analyzer (ITHACA) for complex topographical scenarios. Symmetry
**2017**, 9, 237. [Google Scholar] [CrossRef] - Tsiropoulou, E.E.; Paruchuri, S.T.; Baras, J.S. Interest, energy and physical-aware coalition formation and resource allocation in smart IoT applications. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 22–24 March 2017; pp. 1–6. [Google Scholar]
- Lin, C.R.; Gerla, M. Adaptive clustering for mobile wireless networks. IEEE J. Sel. Areas Commun.
**1997**, 15, 1265–1275. [Google Scholar] [CrossRef] [Green Version] - Rappaport, T.S.; Mayzus, R.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access
**2013**, 1, 335–349. [Google Scholar] [CrossRef] - Boccardi, F.; Heath, R.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five disruptive technology directions for 5G. IEEE Commun. Mag.
**2014**, 52, 74–80. [Google Scholar] [CrossRef] [Green Version] - Shariat, M.; Gutierrez-Estevez, D.M.; Vijay, A.; Safjan, K.; Rugeland, P.; da Silva, I.; Lorca, J.; Widmer, J.; Fresia, M.; Li, Y.; et al. 5G radio access above 6 GHz. Trans. Emerg. Telecommun. Technol.
**2016**, 25, 294–307. [Google Scholar] [CrossRef] - Rappaport, T.S. Characterization of UHF multipath radio channels in factory buildings. IEEE Trans. Antennas Propag.
**1989**, 37, 1058–1069. [Google Scholar] [CrossRef] - Violette, E.J.; Espeland, R.H.; DeBolt, R.O.; Schwering, F.K. Millimeter-wave propagation at street level in an urban environment. IEEE Trans. Geosci. Remote Sens.
**1988**, 26, 368–380. [Google Scholar] [CrossRef] [Green Version] - Sun, S.; Rappaport, T.S.; Rangan, S.; Thomas, T.A.; Ghosh, A.; Kovacs, I.Z.; Rodriguez, I.; Koymen, O.; Partyka, A.; Jarvelainen, J. Propagation path loss models for 5G urban micro- and macro-cellular scenarios. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–6. [Google Scholar]
- Thomas, T.A.; Rybakowski, M.; Sun, S.; Rappaport, T.S.; Nguyen, H.; Kovács, I.Z. A prediction study of path loss models from 2-73.5 GHz in an urban-macro environment. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (Spring VTC-2016), Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Nossire, Z.; Gupta, N.; Almazaydeh, L.; Xiong, X. New empirical path loss model for 28 GHz and 38 GHz millimeter wave in indoor urban under various conditions. Appl. Sci.
**2018**, 8, 2122. [Google Scholar] [CrossRef] - MacCartney, G.R.; Samimi, M.K.; Rappaport, T.S. Omnidirectional path loss models in New York City at 28 GHz and 73 GHz. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 227–231. [Google Scholar]
- Sun, S.; Rappaport, T.S.; Thomas, T.A.; Ghosh, A.; Nguyen, H.C.; Kovacs, I.Z.; Rodriguez, I.; Koymen, O.; Partyka, A. Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications. IEEE Trans. Veh. Technol.
**2016**, 65, 2843–2860. [Google Scholar] [CrossRef] - Al-Samman, A.M.; Rahman, T.A.; Nunoo, S.; Chude-Okonkwo, U. a. K.; Ngah, R.; Shaddad, R.Q.; Zahedi, Y. Experimental characterization and analysis for ultra wideband outdoor channel. Wirel. Pers. Commun.
**2015**, 83, 3103–3118. [Google Scholar] [CrossRef] - Al-Samman, A.M.; Rahman, T.A. Experimental characterization of multipath channels for ultra-wideband systems in indoor environment based on time dispersion parameters. Wirel. Pers. Commun.
**2017**, 95, 1713–1724. [Google Scholar] [CrossRef] - Samimi, M.K.; Rappaport, T.S.; MacCartney, G.R. Probabilistic omnidirectional path loss models for millimeter-wave outdoor communications. IEEE Wirel. Commun. Lett.
**2015**, 4, 357–360. [Google Scholar] [CrossRef] - Jang, J.S.; Yim, H.Y.; Lee, K.B. Channel prediction-based user selection algorithm for multiuser environments. In Proceedings of the 2010 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 17–19 November 2010; pp. 239–240. [Google Scholar]
- Matolak, D.W.; Sun, R.; Liu, P. V2V channel characteristics and models for 5 GHz parking garage channels. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–4. [Google Scholar]
- Santos, T.; Karedal, J.; Almers, P.; Tufvesson, F.; Molisch, A. Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method. IEEE Trans. Wirel. Commun.
**2010**, 9, 282–290. [Google Scholar] [CrossRef] [Green Version] - Tsiropoulou, E.E.; Baras, J.S.; Papavassiliou, S.; Sinha, S. RFID-based smart parking management system. Cyber-Phys. Syst.
**2017**, 3, 22–41. [Google Scholar] [CrossRef] - Al-Samman, A.M.; Rahman, T.A.; Azmi, M.H.; Hindia, M.N. Large-scale path loss models and time dispersion in an outdoor line-of-sight environment for 5G wireless communications. AEU-Int. J. Electron. Commun.
**2016**, 70, 1515–1521. [Google Scholar] [CrossRef] - Rappaport, T.S. Wireless Communications Principles and Practice, 2nd ed.; Prentice Hall Communications Engineering and Emerging Technologies Series; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- MacCartney, G.; Rappaport, T.; Sun, S.; Deng, S. Indoor office wideband millimeter-wave propagation measurements and channel models at 28 GHz and 73 GHz for ultra-dense 5G wireless networks. IEEE Access
**2015**, 3, 2388–2424. [Google Scholar] [CrossRef] - Al-Samman, A.M.; Rahman, T.A.; Azmi, M.H. Indoor corridor wideband radio propagation measurements and channel models for 5G millimeter-wave wireless communications at 19 GHz, 28 GHz and 38 GHz bands. Wirel. Commun. Mob. Comput.
**2018**, 2018, 1–12. [Google Scholar] [CrossRef]

**Figure 9.**The alpha-beta-gamma (ABG) path loss model for 28 GHz and 38 GHz. 6.2 Numerical Results and Computation Complexity.

Parameter | Value |
---|---|

Frequency | 28 GHz and 38 GHz |

Transmit Power | 20 dBm |

Antenna Gain (28, 38 GHz) | 19.18 dB, 21.10 dB |

Tx Antenna Type / Beam-width (28, 38) | Horn/(18.88°, 15.23°) |

Rx Antenna | Omni-directional |

Tx Antenna Height | 2 m |

Rx Antenna Height | 1.7 m |

Setting | Description |
---|---|

SPL | Rx antenna was moved in one parking lot |

DPL | Rx antenna was moved along two parking lots. |

Scenario | Frequency (GHz) | # of Data Point | Dist. Range (m) | ${\mathit{n}}^{\mathit{CI}}$ | ${\mathsf{\sigma}}^{\mathbf{CI}}(\mathbf{dB})$ | ${\mathbf{k}}_{\mathbf{f}}$ |
---|---|---|---|---|---|---|

SPL | 28 GHz | 201 | 14–53 | 2 | 4.0 | 10.6 |

DPL | 187 | 30–66 | 2 | 2.6 | 23.1 | |

SPL | 38 GHz | 201 | 14–53 | 2 | 2.3 | 13.1 |

DPL | 187 | 30–66 | 2 | 1.8 | 19.1 |

Scenario | Model | n | $\mathit{\alpha}$ | $\mathit{b}$ | $\mathit{\gamma}$ | Kf | $\mathit{\sigma}$ [dB] |
---|---|---|---|---|---|---|---|

SPL | ABG | - | 2.9 | 2.4 | 3.8 | - | 2.9 |

DPL | - | 0.6 | 120.8 | 0.9 | - | 1.9 | |

SPL | CI | 2.8 | - | - | - | - | 3.2 |

DPL | 3.3 | - | - | - | - | 3.4 | |

SPL | PLM | 2 | - | - | - | 11.8 dB | 3.0 |

DPL | 2 | - | - | - | 21.1 dB | 3.5 |

**Table 5.**Received power at different transmitter (Tx)-receiver (Rx) separation distance using all studied path loss models.

Tx-Rx Separation Distance (m) | Path Loss Models | Frequency (GHz) | Scenarios | Power Received (P_{r}) (dBm) = P_{t}-PL |
---|---|---|---|---|

60, 70, 80, 90, 100 | CI | 28 | SPL | −84.4, −86.2, −87.8, −89.2, −90.4 |

DPL | −96.9, −99.1, −101.11, −102.8, −104.4 | |||

38 | SPL | −88.8, −90.7, −92.3, −93.7, −95.0 | ||

DPL | −94.12, −96.2, −98.0, −99.6, −101.0 | |||

60, 70, 80, 90, 100 | FI | 28 | SPL | −85.1, −87.2, −88.9, −90.4, −91.9 |

DPL | −92.2, −92.8, −93.2, −93.6, −94 | |||

38 | SPL | −89.4, −91.3, −92.9, −94.3, − 95.6 | ||

DPL | −90.6, −90.9, −91.1, −91.3, −91.5 | |||

60, 70, 80, 90, 100 | PLM | 28 | SPL | −82.6, −83.9, −85.1, −86.1, −87 |

DPL | −95.1, −96.4, −97.6, −98.6, −99.5 | |||

38 | SPL | −87.7, −89, −90.2, −91.2, −92.1 | ||

DPL | −93.7, −95, −96.2, −97.2, −98.1 | |||

60, 70, 80, 90, 100 | ABG | 28 | SPL | −94, −85.9, −87.6, −89.1, −90.4 |

DPL | −119.5, −119.9, −120.2, −120.5, −120.8 | |||

38 | SPL | −89.0, −90.9, −92.6, −94.1, −95.4 | ||

DPL | −120.7, −121.1, −121.4, −121.7, −122 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Al-Samman, A.M.; Rahman, T.A.; Hindia, M.N.; Daho, A.; Hanafi, E.
Path Loss Model for Outdoor Parking Environments at 28 GHz and 38 GHz for 5G Wireless Networks. *Symmetry* **2018**, *10*, 672.
https://doi.org/10.3390/sym10120672

**AMA Style**

Al-Samman AM, Rahman TA, Hindia MN, Daho A, Hanafi E.
Path Loss Model for Outdoor Parking Environments at 28 GHz and 38 GHz for 5G Wireless Networks. *Symmetry*. 2018; 10(12):672.
https://doi.org/10.3390/sym10120672

**Chicago/Turabian Style**

Al-Samman, Ahmed M., Tharek Abd Rahman, MHD Nour Hindia, Abdusalama Daho, and Effariza Hanafi.
2018. "Path Loss Model for Outdoor Parking Environments at 28 GHz and 38 GHz for 5G Wireless Networks" *Symmetry* 10, no. 12: 672.
https://doi.org/10.3390/sym10120672