KHyperline ClusteringBased Color Image Segmentation Robust to Illumination Changes
Abstract
:1. Introduction
2. KHyperline Clustering
3. Color Image Segmentation Based on KHyperline Clustering
Algorithm 1: Color image segmentation based on KHLC. 
Input: Observed data ${\left\{{\mathit{y}}_{i}\right\}}_{i=1}^{T}$ and cluster number K. 

Output: Clustering data ${\mathit{Y}}_{k}$, $k=1,\cdots ,K$. 
* Usually, we can set $num\_iter=500$ and $\epsilon =0.05$. 
4. Experimental Results and Discussion
4.1. Results of Different Color Spaces
4.2. Results of Synthetic Color Images
4.3. Results of Real World Color Images
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
 Chen, J.; Zheng, H.; Lin, X.; Wu, Y.; Su, M. A novel image segmentation method based on fast density clustering algorithm. Eng. Appl. Artif. Intell. 2018, 73, 92–110. [Google Scholar] [CrossRef]
 Gong, M.; Qian, Y.; Cheng, L. Integrated Foreground Segmentation and Boundary Matting for Live Videos. IEEE Trans. Image Process. 2015, 24, 1356–1370. [Google Scholar] [CrossRef] [PubMed]
 Ren, S.; He, K.; Girshick, R.; Sun, J. Faster RCNN: Towards RealTime Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Čehovin, L.; Leonardis, A.; Kristan, M. Robust visual tracking using template anchors. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–8. [Google Scholar] [CrossRef]
 Mazzon, R.; Cavallaro, A. Multicamera tracking using a MultiGoal Social Force Model. Neurocomputing 2013, 100, 41–50. [Google Scholar] [CrossRef]
 Jeong, J.; Won, I.; Yang, H.; Lee, B.; Jeong, D. Deformable Object Matching Algorithm Using Fast Agglomerative Binary Search Tree Clustering. Symmetry 2017, 9, 25. [Google Scholar] [CrossRef]
 Li, F.; Qin, J. Robust fuzzy local information and L_{p}Lpnorm distancebased image segmentation method. IET Image Process. 2017, 11, 217–226. [Google Scholar] [CrossRef]
 Yin, S.; Qian, Y.; Gong, M. Unsupervised Hierarchical Image Segmentation through Fuzzy Entropy Maximization. Pattern Recognit. 2017, 68, 245–259. [Google Scholar] [CrossRef]
 He, L.; Li, Y.; Zhang, X.; Chen, C.; Zhu, L.; Leng, C. Incremental Spectral Clustering via Fastfood Features and Its Application to Stream Image Segmentation. Symmetry 2018, 10, 272. [Google Scholar] [CrossRef]
 Moreno, R.; GranA, M.; Ramik, D.M.; Madani, K. Image segmentation on spherical coordinate representation of RGB colour space. Image Process. IET 2012, 6, 1275–1283. [Google Scholar] [CrossRef]
 Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An Efficient kMeans Clustering Algorithm: Analysis and Implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [Google Scholar] [CrossRef]
 Nongmeikapam, K.; Kumar, W.K.; Singh, A.D. Fast and Automatically Adjustable GRBF Kernel Based Fuzzy CMeans for Clusterwise Coloured Feature Extraction and Segmentation of MR Images. IET Image Process. 2018, 12, 513–524. [Google Scholar] [CrossRef]
 Ahmed, M.N.; Yamany, S.M.; Mohamed, N.; Farag, A.A.; Moriarty, T. A modified fuzzy Cmeans algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imag. 2002, 21, 193–199. [Google Scholar] [CrossRef] [PubMed]
 Krinidis, S.; Chatzis, V. A Robust Fuzzy Local Information CMeans Clustering Algorithm. IEEE Trans. Image Process. 2010, 19, 1328–1337. [Google Scholar] [CrossRef] [PubMed]
 Lei, T.; Jia, X.; Zhang, Y.; He, L.; Meng, H.; Nandi, A.K. Significantly Fast and Robust Fuzzy CMeans Clustering Algorithm Based on Morphological Reconstruction and Membership Filtering. IEEE Trans. Fuzzy Syst. 2018, 26, 3027–3041. [Google Scholar] [CrossRef]
 Li, J.; Miao, Z. Foreground segmentation for dynamic scenes with sudden illumination changes. Image Process. IET 2012, 6, 606–615. [Google Scholar] [CrossRef]
 Delibasis, K.K.; Goudas, T.; Maglogiannis, I. A novel robust approach for handling illumination changes in video segmentation. Eng. Appl. Artif. Intell. 2016, 49, 43–60. [Google Scholar] [CrossRef]
 Xie, K.; He, Z.; Cichocki, A.; Fang, X. Rate of Convergence of the FOCUSS Algorithm. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 1276–1289. [Google Scholar] [CrossRef] [PubMed]
 Xie, K.; He, Z.; Cichocki, A. Convergence analysis of the FOCUSS algorithm. IEEE Trans. Neural Netw. Learn. Syst. 2017, 26, 601–613. [Google Scholar] [CrossRef] [PubMed]
 Bofill, P.; Zibulevsky, M. Underdetermined blind source separation using sparse representations. Signal Process. 2001, 81, 2353–2362. [Google Scholar] [CrossRef] [Green Version]
 He, Z.; Cichocki, A.; Li, Y.; Xie, S.; Sanei, S. Khyperline clustering learning for sparse component analysis. Signal Process. 2009, 89, 1011–1022. [Google Scholar] [CrossRef] [Green Version]
 Swain, M.J.; Ballard, D.H. Color indexing. Int. J. Comput. Vision 1991, 7, 11–32. [Google Scholar] [CrossRef]
 Finlayson, G.D.; Drew, M.S.; Funt, B.V. Diagonal transforms suffice for color constancy. In Proceedings of the International Conference on Computer Vision, Berlin, Germany, 11–14 May 1993; pp. 164–171. [Google Scholar]
 Arbeláez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 898–916. [Google Scholar] [CrossRef] [PubMed]
 Smith, A.R. Color gamut transform pairs. ACM Siggraph Comput. Graph. 1978, 12, 12–19. [Google Scholar] [CrossRef]
Illumination Levels (%)  $50$  $40$  $30$  $20$  $10$  10  20  30  40  50 

Kmeans  0.18  0.31  0.50  0.62  0.81  0.81  0.62  0.50  0.31  0.18 
Kmeans (norm)  0.25  0.37  0.56  0.68  0.81  0.81  0.81  0.50  0.31  0.25 
FCM  0.25  0.37  0.56  0.81  0.87  0.93  0.81  0.56  0.31  0.25 
FCM (norm)  0.06  0.06  0.12  0.12  0.18  0.18  0.12  0.12  0.12  0.06 
FLICM  0.32  0.42  0.56  0.65  0.81  0.81  0.68  0.62  0.48  0.35 
FRFCM  0.58  0.61  0.78  0.89  0.96  0.96  0.89  0.77  0.63  0.61 
Our method  $\mathbf{0.93}$  $\mathbf{1}$  $\mathbf{1}$  $\mathbf{1}$  $\mathbf{1}$  $\mathbf{1}$  $\mathbf{1}$  $\mathbf{1}$  $\mathbf{0.93}$  $\mathbf{0.93}$ 
Images (Name)  KMeans  FCM  FLICM  FRFCM  Ours 

Church  0.9216  0.9246  0.8211  0.9730  $\mathbf{0.9795}$ 
Flower  0.8349  0.8457  0.7414  $\mathbf{0.9648}$  0.9387 
Rhinoceros  0.5536  0.6105  0.6290  0.7266  $\mathbf{0.9348}$ 
Tiger  0.4180  0.6597  0.6461  0.8472  $\mathbf{0.8597}$ 
Horses  0.7425  0.7922  0.6643  0.8321  $\mathbf{0.9257}$ 
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Li, P.; Wen, H.; Xie, Y.; He, Z. KHyperline ClusteringBased Color Image Segmentation Robust to Illumination Changes. Symmetry 2018, 10, 610. https://doi.org/10.3390/sym10110610
Yang S, Li P, Wen H, Xie Y, He Z. KHyperline ClusteringBased Color Image Segmentation Robust to Illumination Changes. Symmetry. 2018; 10(11):610. https://doi.org/10.3390/sym10110610
Chicago/Turabian StyleYang, Senquan, Pu Li, HaoXiang Wen, Yuan Xie, and Zhaoshui He. 2018. "KHyperline ClusteringBased Color Image Segmentation Robust to Illumination Changes" Symmetry 10, no. 11: 610. https://doi.org/10.3390/sym10110610