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Abstract: Color image segmentation is very important in the field of image processing as it is
commonly used for image semantic recognition, image searching, video surveillance or other
applications. Although clustering algorithms have been successfully applied for image segmentation,
conventional clustering algorithms such as K-means clustering algorithms are not sufficiently robust
to illumination changes, which is common in real-world environments. Motivated by the observation
that the RGB value distributions of the same color under different illuminations are located in an
identical hyperline, we formulate color classification as a hyperline clustering problem. We then
propose a K-hyperline clustering algorithm-based color image segmentation approach. Experiments
on both synthetic and real images demonstrate the outstanding performance and robustness of the
proposed algorithm as compared to existing clustering algorithms.

Keywords: image segmentation; color classification; clustering; K-hyperline clustering; illumination

1. Introduction

Image segmentation, which partitions images into multiple regions with similar characteristics,
is commonly used for image analysis and understanding. Simultaneously, it is also a fundamental
step for further image understanding [1] and directly affects the accuracy of many computer vision
applications [2], such as object detection [3], object tracking [4,5] and image retrieval [6]. In general,
existing color image segmentation methods can be classified into five categories: thresholding,
clustering, edge detection, region extraction and saliency detection [7]. These methods are mainly
based on watershed transform or clustering procedures [8]. The former computes the spatial gradient
of image luminance; however, the chromatic information is ignored [9]. The latter depends on the
balance of the pixel color distribution [10].

The most popular clustering algorithm is K-means clustering, which is an exclusive clustering
algorithm based on minimizing formal objective function [11]. Although K-means is widely used
and studied, it is sensitive to outliers that lead to converge to local minima so that its accuracy is
not perfect and may fail to represent the data [12]. In order to overcome the weaknesses of K-means
clustering. Ahmed M N et al. [13] proposed Fuzzy C-Means (FCM), which allows a pixel belonging
to a different cluster at multiple degrees of memberships and has been successfully applied to MR
image segmentation. To further improve the noise immunity of FCM, Krinidis et al. [14] proposed the
Fuzzy Local Information C-Means (FLICM) clustering algorithm, which incorporates the spatial and
gray information in a fuzzy way. Although FLICM promotes noise immunity and is free of parameter
selection, the calculation of the local information is time consuming and limits its application in high
dimension data. To reduce the computational complexity and enhance the robustness to outlines,
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Lei et al. [15] introduced a Fast and Robust Fuzzy C-Means (FRFCM), which uses morphological
reconstruction to smooth the image and employs a faster membership to calculate the distance between
the pixels and cluster centers.

However, these local information-based clustering algorithms such as FLICM and FRFCM
clustering are not robust to illumination changes, i.e., pixels with identical colors, but different
illuminations may be segmented into different segments (sets of pixels), which limits their real-world
applications. To handle the illumination changes in scenes, Li and Miao [16] employed a two-layer
Gaussian mixture model to represent the different illumination backgrounds and segment the
foreground image regions based on the learned model. Delibasis et al. [17] proposed a video
segmentation robust to change in illumination based on different background models. Although
these approaches achieve favorable performance on many video sequences, the supervised pre-learned
background model limits their application in single image segmentation. Additionally, the distribution
of color is not fully utilized.

Motivated by the observation that the RGB value distributions of the same kind of color, which is
captured under different illuminations, are located in an identical hyperline, we employ hyperline
clustering to perform unsupervised model-free color classification-based image segmentation such
that it is robust to varying illuminations. Then, we propose a novel color classification-based image
segmentation method using the multilayer K-hyperline clustering algorithm, which is capable of
finding K partitions of the image data that converge to a global minimum. Finally, we conduct
numerous experiments to verify the competitive result of the proposed approach.

The reminder of this paper is organized as follows. Section 2 presents the K-hyperline clustering
method. Section 3 describes the proposed illumination-invariant color segmentation approach.
Experiments on synthetic and color images from the Berkeley Segmentation Dataset (BSDS500) are
carried out in Section 4. The conclusions and future work are presented in Section 5.

2. K-Hyperline Clustering

K-hyperline clustering is a special case of the general joint optimization problem of Sparse
Component Analysis (SCA) [18]. The problem of SCA can be modeled as follows [19]:

Y = AX or y = Ax (1)

where matrix Y = [y1, · · · , yT ] ∈ Rm×T is an observed matrix, A = [a1, · · · , an] ∈ Rm×n is an
unknown full row rank basis matrix and X = [x1, · · · , xT ] ∈ Rn×T is the matrix of sparse sources.
When the sources X are sparse enough to satisfy the disjoint orthogonality condition approximately,
i.e., xi · xj = 0, the model (1) can be rewritten as:

y = Ax = a1 · x1 + · · ·+ an · xn = ai · xi (2)

Equation (2) can be further simplified as:

y1

ai1
=

y2

ai2
= · · · = ym

aim
= xi (3)

where ai = [ai1, · · · , aim]
T . Since Equation (3) is a linear equation and all columns a1, · · · , am of A are

the hyperline directions of the observed data y(t). In other words, finding the basis matrix A can be
considered as a hyperline clustering problem [20].

Given a set of observed data points {yi}T
i=1, which respectively are located on K-hyperlines L(lk),

where lk is the directional vector of the corresponding hyperline and k = 1, · · · , K. K-Hyperline
Clustering (K-HLC) aims to estimate K-hyperlines L(lk) by identifying lk, k = 1, · · · , K, as shown in
Figure 1.
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Figure 1. Hyperline clustering, observed data points {yi}T
i=1 (blue points) and hidden hyperlines (red lines).

Mathematically, K-HLC can be considered as the following optimization problem [21]:

min
lk ,Ωk ,k=1,··· ,K

J(lk, Ωk, k = 1, · · · , K) = min
lk ,Ωk ,k=1,··· ,K

T

∑
i=1

K

∑
k=1

d2(yi, lk)× Ii∈Ωk , (4)

where lk = [lk1, · · · , lkm]
> ∈ Rm is the directional vector of hyperline L(lk); the indicator function

Ii∈Ωk is given by:

Ii∈Ωk =

{
1, i ∈ Ωk

0, i /∈ Ωk
(5)

Ωk denotes the k-th cluster set; the distance d(y, l) from y to L(lk) is:

d(y, l) =

√
〈y, y〉 − 〈y, l〉

〈l, l〉 , (6)

〈·, ·〉 denotes the inner product.
Recently, He et al. [21] proposed a K-Hyperline Clustering (K-HLC) algorithm, which is not only

robust to outliers, but can also detect the number of hidden hyperlines in an unsupervised manner.
Furthermore, K-hyperline clustering is capable of avoiding local minima with a high probability by
incorporating Fast Multilayer Initialization (FMI).

The first step of FMI is to segment the initial direction matrix L̂(0) = Y into M lower dimensional
matrices L̂(0)

1 , · · · , L̂(0)
M , whose size are m×NM. Then, FMI constructs the initial direction matrix L(0) by

selecting K possibly optimal columns from L̂(0)
i = [l̂(0)i (1), · · · , l̂(0)i (K + NM)], i = 1, · · · , M. To select

K optimal columns, all correlation coefficients c(l(0)i (k), y(t)) = [l(0)]T [y(t)] are computed, and the

sample y(t) is assigned to the k-th sets Ω(l(0)i (k)) if it satisfies k = arg maxj=1,··· ,K
{
|c(l(0)i (j), y(t)|

}
.

Finally, the m× K matrix L(0) is constructed by extracting K columns corresponding to the greatest
number of set Ω(l(0)i (k)), k = 1, · · · , K + NM. Through FMI, a high-dimensional hyperline matrix can
be rapidly scanned, and efficient initialization can be achieved.

After initialization using FMI, K-HLC is implemented in a manner similar to that of K-means
clustering in terms of the two steps: cluster assignment and cluster centroid update. In the cluster
assignment step, observed data {yi}T

i=1 are assigned to Ωk by choosing k such that:

k = arg min
j=1,··· ,K

d2(yi, lj) (7)

In the second step, the cluster centroid is obtained by eigenvalue decomposition.
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3. Color Image Segmentation Based on K-Hyperline Clustering

In this section, we illustrate the proposed color image segmentation method based on K-HLC in detail.
In the RGB color model, three primary colors (red, green and blue) are exploited together to

produce an array of colors [22]. Thus, the RGB vector of a color pixel can be represented by:

y = [r, g, b]>.

When the illumination changes, a simple and effective diagonal model, which maps colors under
some reference illumination o to their corresponding color under another illumination u, is given by [23]: Ro

Go

Bo

 =

 a1 0 0
0 a2 0
0 0 a3


 Ru

Gu

Bu

 (8)

Model (8) can be rewritten as:
yo = Ayu (9)

This model is similar to Model (1); thus, we employ K-HLC to solve the problem of
illumination change.

To illustrate illumination changes, we generate a color grid with three primary colors—red
([255, 0, 0]>) green ([0, 255, 0]>) blue ([0, 0, 255]>)—and three secondary colors—yellow ([255, 255, 0]>)
magenta ([255, 0, 255]>) cyan ([0, 255, 255]>)—under eight different illuminations, where we change
their RGB values through reducing illumination using Photoshop software. The color grid image is
shown in Figure 2a. Figure 2b shows that the pixel sequence {yi}T

i=1 of a color, for all illuminations on
the color grid, is located on the same line, where:

yi = [ri, gi, bi]
>,

i = 1, · · · , T and T is the total number of image pixels. In other words, the pixels of the original
images and their corresponding varied illumination ones are located on the same line. In detail,
it is obvious that six hyperlines (straight lines for 3D space) corresponding to six colors are located
in six direction for the linear distribution of different illumination. The normalized directional
vectors are [1, 0, 0]> (red color), [0, 1, 0]> (green color), [0, 0, 1]> (blue color), [ 1√

2
, 1√

2
, 0]> (yellow color),

[ 1√
2
, 0, 1√

2
]> (magenta color) and [0, 1√

2
, 1√

2
]> (cyan color), respectively. Thus, the color classification

can be formulated as the hyperline clustering problem. Moreover, to suppress the outliers and obtain
good performance against spots, we normalize yi such that ‖yi‖ = 1 and initialize the hyperlines L(lk)

using Fast Multilayer Initialization (FMI).

(a) (b)

Figure 2. (a) Color grid of six different colors under varying illuminations. (b) Scatter plot of the color
grid in (a), where the colors of scatter points correspond to those of image pixels.
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The proposed algorithm is summarized in Algorithm 1.

Algorithm 1: Color image segmentation based on K-HLC.

Input: Observed data {yi}T
i=1 and cluster number K.

1: Initialize the direction of hyperline L(0) = [l(0)1 , · · · , l(0)K ] using FMI and the number of
iterations iter = 0.

2: Normalize {yi} such that ‖yi‖ = 1, i = 1, · · · , T.
3: while

∥∥∥L(iter) − L(iter−1)
∥∥∥ < ε and iter < num_iter ∗ do

4: Assign data {yi}T
i=1 to K different clustering sets Ωk, k = 1, · · · , K. Data index i ∈ Ωk if and

only if it satisfies
k = argmini=1,··· ,K

{
d2(y, li)

}
.

5: Obtain a set of submatrices Yk = [yk
1, · · · , yk

T̃k
], where T̃k data yk

1, · · · , yk
T̃k

are assigned to Ωk.

6: Compute the first eigenvector u1k of each matrix Yk · (Yk)
>/T, k = 1, · · · , K.

7: Update direction vectors lk using u1k, k = 1, · · · , K.
8: iter = iter + 1.
9: end while

Output: Clustering data Yk, k = 1, · · · , K.
∗ Usually, we can set num_iter = 500 and ε = 0.05.

4. Experimental Results and Discussion

We conducted numerical experiments to evaluate the performance of the proposed algorithm and
performed comparisons with some existing methods. All experiments were tested in MATLAB R2015b,
running on a Lenovo laptop with Intel I7 CPU 3.4 GHz and 8 GB RAM under Windows 7 Professional.
First, we compared the proposed method with other algorithms in different color spaces. Second,
we tested the synthetic images with different levels of illuminations. Third, we tested the method
on images from the standard Berkeley Segmentation Dataset (BSDS500) [24]. The popular clustering
segmentation methods: K-means, FCM, FILCM and FRFCM were employed in these for comparison,
since the related codes are publicly accessible. The parameters of FILCM and FRFCM were selected
following the suggestion of the authors. Besides, for a fair comparison, we set the same cluster number
of all comparative approaches according to the ground truth without taking into account the spatial
adjacency of pixels or the smoothness of segmentation boundaries. To evaluate the segmentation
results quantitatively, we use Segmentation Accuracy (SA) as the performance measure, which is
defined as follows [13]:

SA =
Number of correctly-classified pixels

Total number of pixels
(10)

4.1. Results of Different Color Spaces

Besides widely used RGB color space, many color models, like HSL (Hue, Saturation, Lightness),
HSV (Hue, Saturation, Value) and CIE-Lab, have been proposed to align with the human color
vision system [25]. To demonstrate the superiority of the proposed method, we performed numerical
experiments in different color spaces using Figure 2a. It is worth mentioning that we set the same RGB
values of each grid. However, the marginal RGB value of each grid was different from the central one.
This can be attributed to normalized function of MATLAB and is more challenging for a comparative
algorithm. For the Lab color space, we utilized the MATLAB function “applycform” to convert the RGB
value into the Lab color space. For HSL and HSV color spaces, to eliminate the effect of illuminations,
we performed clustering procedures in the HS (Hue + Saturation) space. Since there are six colors in
the color grid image, we set K = 6 in the experiment.
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In Figure 3, we show the results of different clustering algorithms in Lab color spaces. The SA are
reported below each segmentation result. From the reported SA, we can observe that FCM obtains the
best segmentation result in the Lab color space. However, it tends to classify the lowest illumination as
the same cluster, as shown in the last cluster of Figure 3b.

1
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(a) FCM in HSL color space

Frame #1 Frame #50 Frame #168 Frame #200 Frame #540 Frame #600

(b) FCM in LAB color space

Fig. 1: Result of Scene 1.
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Fig. 2: Result of Scene 2.

(a) K-means result in the Lab color space, SA: 0.5916;
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Fig. 2: Result of Scene 2.

(b) FCM result in the Lab color space, SA: 0.6683;
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Fig. 1: Result of Scene 1.

(c) FLICM result in the Lab color space, SA: 0.3781;
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(b) FRFCM in LAB color space
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Fig. 1: Result of Scene 1.

(d) FRFCM result in the Lab color space, SA: 0.6250;

1

Frame #1 Frame #76 Frame #87 Frame #88 Frame #250 Frame #265

(a) FLICM in LAB color space

Frame #1 Frame #50 Frame #168 Frame #200 Frame #540 Frame #600

(b) FRFCM in LAB color space

Frame #1 Frame #50 Frame #168 Frame #200 Frame #540 Frame #600

(b) KHLC in LAB color space

Fig. 1: Result of Scene 1.

(e) The proposed approach result in Lab color space, SA: 0.6452;

Figure 3. Experimental results in the Lab color space. SA, Segmentation Accuracy; FLICM, Fuzzy Local
Information C-Means; FRFCM, Fast and Robust Fuzzy C-Means.

Figure 4 shows the results of the HS color space. Note that only the K-means and FCM are
presented. The provided codes of both FLICM and FRFCM are designed in one or three dimensions.
Although K-means performed better than FCM in the HS color space, there were still many spots in
the results of K-means, as shown in the fifth cluster of Figure 4a.
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(b) FCM result in the HS color space, SA: 0.5461;

Figure 4. Experimental results in the HS color space.

Figure 5 shows that FRFCM obtained a better performance than FILCM due to its morphological
reconstruction. However, it failed to cope with low illumination. Among all of them, the proposed
K-HLC-based method gave the most accurate segmentation and obtained the highest SA value of
one in the RGB color space. This can be attributed to the linear distribution of the color grid image,
as shown in Figure 2.
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(b) FCM result in the RGB color space, SA: 0.6875;
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(c) FLICM result in the RGB color space, SA: 0.5461;

1

Frame #1 Frame #76 Frame #87 Frame #88 Frame #250 Frame #265

(a) FCM in HSL color space

Frame #1 Frame #50 Frame #168 Frame #200 Frame #540 Frame #600

(b) FCM in LAB color space

Fig. 1: Result of Scene 1.

(d) FRFCM result in the RGB color space, SA: 0.8643;
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Fig. 3: Result of Scene 3.
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(e) The proposed approach result in the RGB color space, SA: 1.

Figure 5. Experimental results in the RGB color space.

4.2. Results of Synthetic Color Images

In the this test, we generated a set of synthetic color images, whose levels of illuminations varied
from −50% to 50%, as shown in Figure 6. For a fair comparison, We applied the proposed algorithm
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and other algorithms to both the original and normalized images. From Table 1, we can see that as the
illumination changes, the SA values of normalized FCM clustering decreased much faster than others.
This can be attributed to the performance of FCM completely depending on the location of the cluster
center. It is worth noting that our method could correctly segment all 16 colors when illuminations
varied from −40% to 30%. However, other clustering methods failed to classify different color grids
when they suffered illumination changes. As we can see, the proposed approach yielded the best
results for all ten illumination levels.

(a) Original image. (b) Image with
−50 illumination.

(c) Image with
−10 illumination.

(d) Image with
10 illumination.

(e) Image with
50 illumination.

Figure 6. Synthetic image, image with different level illuminations.

Table 1. SA of comparative methods for synthetic images. The best result is shown in bold font.

Illumination Levels (%) −50 −40 −30 −20 −10 10 20 30 40 50

K-means 0.18 0.31 0.50 0.62 0.81 0.81 0.62 0.50 0.31 0.18
K-means (norm) 0.25 0.37 0.56 0.68 0.81 0.81 0.81 0.50 0.31 0.25

FCM 0.25 0.37 0.56 0.81 0.87 0.93 0.81 0.56 0.31 0.25
FCM (norm) 0.06 0.06 0.12 0.12 0.18 0.18 0.12 0.12 0.12 0.06

FLICM 0.32 0.42 0.56 0.65 0.81 0.81 0.68 0.62 0.48 0.35
FRFCM 0.58 0.61 0.78 0.89 0.96 0.96 0.89 0.77 0.63 0.61

Our method 0.93 1 1 1 1 1 1 1 0.93 0.93

4.3. Results of Real- World Color Images

In the third test, we selected five real-world images from BSDS500 (church, flower, rhinoceros,
tiger and horses). Note that the results are only associated with image color information without
considering the spatial connection of pixels, and the segment number K was set according to the ground
truths. The obtained segmentation SAs are shown in Table 2. From the table, we can observe that
our method provided much more satisfactory results than K-means and FCM clustering, particularly
for the rhinoceros and horses images where the illumination of the foreground was homogeneous
with that of background. Although FRFCM obtained a higher SA than ours for the flower image,
other images results demonstrated the superiority of our method. Figure 7 shows the segmentation
results for the selected example. Visual inspection demonstrates that our method out-performed both
conventional and state-of-the-art clustering methods. We attribute this to the illumination invariance
of our approach, which helped to segment a connecting foreground. For example, the results of the
horses image obtained by the other algorithms were not able to segment the background as well as
ours. This can be attributed to the illumination immunity of the proposed method.

To illustrate our approach further, we performed a scatter plot of three different regions of the
church image, as shown in Figure 8. The wall, shadow and dome regions are represented by blue, red
and black arrow lines, respectively. As we can observe, the location of the black cluster is closer to that
of the red cluster; thus, the K-means and FCM tended to classify these two regions as the same color
because of the distance between the clusters. In contrast, our approach could detect the hyperline of
the blue and black cluster (denoted by purple line); hence, the proposed approach was able to identify
the same color in different illuminations and obtained color coherent segmentation.
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Table 2. Comparison of SA for the BSDS500 images. The best result is shown in bold font.

Images (Name) K-Means FCM FLICM FRFCM Ours

Church 0.9216 0.9246 0.8211 0.9730 0.9795
Flower 0.8349 0.8457 0.7414 0.9648 0.9387

Rhinoceros 0.5536 0.6105 0.6290 0.7266 0.9348
Tiger 0.4180 0.6597 0.6461 0.8472 0.8597

Horses 0.7425 0.7922 0.6643 0.8321 0.9257

1

Fig. 1: Color image segmentation of BSDS500 images (Church, Flower, Rhinoceros, Tiger, Horses, Bear, and Man). First
column shows the original images. Second column shows the ground truths. Third column shows the results of K-means
clustering. Fourth column shows the result of FCM clustering. Fifth column shows the results of our method.

Figure 7. Color image segmentation of the BSDS500 images (church, flower, rhinoceros, tiger and
horses). The first row shows the original images. The second row shows the ground truths. The third
row shows the results of K-means clustering. The fourth row shows the result of FCM clustering.
The fifth row shows the results of FLICM. The sixth row shows the results of FRFCM. The seventh row
shows the results of our method.
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Figure 8. Scatter plot of three different regions of the church image. The wall, shadow and dome
regions are represented by blue, red and black arrow lines, respectively.

5. Conclusions

In this study, we formulate color image classification as a hyperline clustering problem and then
develop a novel and effective K-hyperline clustering-based color image segmentation approach, which
is robust to illumination changes. Both qualitative and quantitative analyses demonstrate that the
proposed algorithm outperforms the conventional K-means and FCM and more recent FLICM and
FRFCM clustering approaches in different color spaces. The limitation of the proposed approach is
that K-HLC has a run time that is twice that of the K-means clustering approach. Therefore, our future
work will focus on the development of a more efficient hyperline clustering algorithm and also its
application to illumination-invariant visual tracking and object detection.
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