Understanding User Behavioral Intention to Adopt a Search Engine that Promotes Sustainable Water Management
Abstract
:1. Introduction
2. Theoretical Background
2.1. Sustainable Water Management
2.2. Lilo: Sustainable Water Management Through Donation of Drops
2.3. Behavioral Intention to Adopt a Meta Search Engine that Favors Sustainable Water Management
3. Hypothesis Development and Research Model
4. Methodology
4.1. Data Collection
4.2. Data Analysis
4.2.1. Measuring Scales
4.2.2. Estimation of Structural Equation Modeling
5. Results
5.1. Measurement Model
5.2. Hypothesis Testing
6. Discussion
7. Implications and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saura, J.R.; Palos-Sánchez, P.; Cerdá Suárez, L.M. Understanding the Digital Marketing Environment with KPIs and Web Analytics. Future Internet 2017, 9, 76. [Google Scholar] [CrossRef]
- Lyman, P.; Varian, H.R. Reprint: How Much Information? J. Electron. Publ. 2000, 6. [Google Scholar] [CrossRef]
- Palos-Sanchez, P.; Saura, J.R. The Effect of Internet Searches on Afforestation: The Case of a Green Search Engine. Forests 2018, 9, 51. [Google Scholar] [CrossRef]
- Browman, H.I.; Stergiou, K.I. Perspectives on ecosystem-based approaches to the management of marine resources. Mar. Ecol. Prog. Ser. 2004, 274, 269–303. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Varian, H. Predicting the Present with Google Trends. Econ. Rec. 2012, 88, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Hannak, A.; Sapiezynski, P.; Kakhki, A.M.; Krishnamurthy, B.; Lazer, D.; Mislove, A.; Wilson, C. Measuring personalization of web search. In Proceedings of the 22nd International Conference on World Wide Web—WWW 13, Rio de Janeiro, Brazil, 13–17 May 2013. [Google Scholar] [CrossRef]
- Saura, J.R.; Palos-Sánchez, P.; Reyes-Menendez, A. Marketing a través de Aplicaciones Móviles de Turismo (M-Tourism). Un estudio exploratorio. Int. J. World Tour. 2017, 4, 45–56. [Google Scholar]
- Saura, J.R.; Reyes-Menendez, A.; Alvarez-Alonso, C. Do online comments affect environmental management? Identifying factors related to environmental management and sustainability of hotels. Sustainability 2018, 10, 3016. [Google Scholar] [CrossRef]
- Bennett, D.; Yábar, D.P.B.; Saura, J.R. University Incubators May Be Socially Valuable, but How Effective Are They? A Case Study on Business Incubators at Universities 2017. In Entrepreneurial Universities. Innovation, Technology, and Knowledge Management; Peris-Ortiz, M., Gómez, J., Merigó-Lindahl, J., Rueda-Armengot, C., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Guarnascheli, A.B.; Garau, A.M.; Lemcoff, J.H. Water Stress and Afforestation: A Contribution to Ameliorate Forest Seedling Performance During the Establishment. In Water Stress; Intech: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Google Blog. 2009. Available online: https://googleblog.blogspot.com/2009/01/powering-google-search.html (accessed on 1 February 2018).
- Chin, W.W.; Newsted, P.R. Structural Equation Modeling Analysis with Small Samples Using Partial Least Squares. In Statistical Strategies for Small Sample Research; Hoyle, R., Ed.; Sage Publications: Thousand Oaks, CA, USA, 1999; pp. 307–341. [Google Scholar]
- Palos-Sanchez, P.; Martin-Velicia, F.; Saura, J.R. Complexity in the Acceptance of Sustainable Search Engines on the Internet: An Analysis of Unobserved Heterogeneity with FIMIX-PLS. Complexity 2018, 2018, 6561417. [Google Scholar] [CrossRef]
- Palos-Sanchez, P.R.; Saura, J.R.; Reyes-Menendez, A.; Esquivel, I.V. Users Acceptance of Location-Based Marketing Apps in Tourism Sector: An Exploratory Analysis. J. Spat. Organ. Dyn. 2018, 6, 258–270. [Google Scholar]
- Wang, Y.Y.; Luse, A.; Townsend, A.M.; Mennecke, B.E. Understanding the moderating roles of types of recommender systems and products on customer behavioral intention to use recommender systems. Inf. Syst. e-Bus. Manag. 2015, 13, 769–799. [Google Scholar] [CrossRef]
- Hsieh, H.L.; Kuo, Y.M.; Wang, S.R.; Chuang, B.K.; Tsai, C.H. A Study of Personal Health Record User’s Behavioral Model Based on the PMT and UTAUT Integrative Perspective. Int. J. Environ. Res. Public Health 2016, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Zalewski, M. Ecohydrology—The scientific background to use ecosystem properties as management tools toward sustainability of water resources. Ecol. Eng. 2000, 16, 1–8. [Google Scholar] [CrossRef]
- Somlyody, L.; Yates, D.; Varis, O. Challenges to freshwater management. Int. J. Ecohydrol. Hydrobiol. 2001, 1, 65–96. [Google Scholar]
- Wagner, W.; Gawel, J.; Furumai, H.; Pereira de Souza, M.; Texeira, D.; Rios, L.; Ohgaki, S.; Zehnder, A.; Hemond, H.F. Sustainable watershed management: An international multi-watershed case study. Ambio 2002, 31, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Dare, L.; Evans, M. Understanding water governance: The case of Australia’s Murray-darling basin. Policy Stud. 2017, 38, 411–417. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y. Selection of representative GCM scenarios preserving uncertainties. J. Water Clim. Chang. 2017, 8, 641–651. [Google Scholar] [CrossRef] [Green Version]
- Xenopoulos, M.; Lodge, D.; Alcamo, J.; Marker, M.; Schulze, K.; Van Vuuren, D. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Glob. Chang. Biol. 2005, 11, 1557–1564. [Google Scholar] [CrossRef]
- OECD. Water Withdrawals [Indicator]. 2018. Available online: https://www.oecd-ilibrary.org/environment/water-withdrawals/indicator/english_17729979-en (accessed on 15 May 2018).
- OECD. Waste Water Treatment [Indicator]. 2018. Available online: https://www.oecd-ilibrary.org/environment/waste-water-treatment/indicator/english_ef27a39d-en (accessed on 15 May 2018).
- Larsen, T.; Gujer, W. The concept of sustainable urban water management. Water Sci. Technol. 1997, 35, 3–10. [Google Scholar] [CrossRef]
- Russo, T.; Alfredo, K.; Fisher, J. Sustainable Water Management in Urban, Agricultural, and Natural Systems. Water 2014, 6, 3934–3956. [Google Scholar] [CrossRef] [Green Version]
- Rieder, B. Networked control: Search engines and the symmetry of confidence. Int. Rev. Inf. Ethics 2005, 3, 26–32. [Google Scholar]
- Bayus, B.L. Understanding Customer Needs in Handbook of Technology and Innovation Management; Shane, S., Ed.; Wiley: Chichester, UK; Hoboken, NJ, USA, 2008. [Google Scholar]
- Stevens, G.; Burley, J. 3000 raw ideas = 1 commercial success! Res. Technol. Manag. 1997, 40, 16–27. [Google Scholar] [CrossRef]
- Lin, H.F. Understanding Behavioral Intention to Participate in Virtual Communities. CyberPsychology Behav. 2006, 9, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yao, J.; Yu, C. Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. J. Strateg. Inf. Syst. 2005, 14, 245–268. [Google Scholar] [CrossRef]
- Sung, H.; Jeong, D.; Jeong, Y.; Shin, J. The Relationship among Self-Efficacy, Social Influence, Performance Expectancy, Effort Expectancy, and Behavioral Intention in Mobile Learning Service. Int. J. e-Serv. Sci. Technol. 2015, 8, 197–206. [Google Scholar] [CrossRef]
- Morgan-Thomas, A.; Veloutsou, C. Beyond technology acceptance: Brand relationships and online brand experience. J. Bus. Res. 2013, 66, 21–27. [Google Scholar] [CrossRef]
- Tai, C.L. The Impacts of Utilitarian and Hedonic Motivations on Habit and Online Browsers’ Behaviors. Int. J. Adv. Comput. Sci. Appl. IJCSIA 2014, 4, 126–130. [Google Scholar]
- Francis, A.J.J.; Eccles, M.P.M.; Johnston, M.; Walker, A.; Grimshaw, J.; Foy, R.; Kaner, E.F.S.; Smith, L.; Bonetti, D.; Francis, J. Constructing Questionnaires Based on the Theory of Planned Behaviour a Manual for Health Services Researchers; Centre for Health Services Research: Newcastle Upon Tyne, UK, 2004; pp. 1–42. [Google Scholar]
- Mathieson, K. Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Inf. Syst. Res. 1991, 2, 173–191. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ajzen, I. Attitudes, Personality and Behavior; Open University Press: Milton Keynes, UK, 1988. [Google Scholar]
- Armitage, C.J.; Conner, M.; Loach, J.; Willetts, D. Different perceptions of control: Applying an ex- tended theory of planned behavior to legal and illegal drug. Basic Appl. Soc. Psychol. 1999, 21, 301–316. [Google Scholar] [CrossRef]
- O’Connor, R.C.; Armitage, C.J. Theory of planned behaviour and parasuicide: An exploratory study. Curr. Psychol. 2003, 22, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Goto, T.; Duc, N.T.; Bollegala, D.; Ishizuka, M. Exploiting symmetry in relational similarity for ranking relational search results. In Pacific Rim International Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2010; pp. 595–600. [Google Scholar]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Chang, I.; Hwang, H.; Hung, W.; Li, Y. Physicians’ acceptance of pharmacokinetics-based clinical decision support systems. Expert Syst. Appl. 2007, 33, 296–303. [Google Scholar] [CrossRef]
- Jang, Y.T.; Chang, S.E.; Tsai, Y. Smartphone security: Understanding smartphone users’ trust in information security management. Secur. Commun. Netw. 2014, 7, 1313–1321. [Google Scholar] [CrossRef]
- Phichitchaisopa, N.; Naenna, T. Factors affecting the adoption of healthcare information technology. EXCLI J. 2013, 12, 413–436. [Google Scholar] [PubMed]
- Alaiad, A.; Zhou, L. The determinants of home healthcare robots adoption: An empirical investigation. Int. J. Med. Inform. 2014, 83, 825–840. [Google Scholar] [CrossRef] [PubMed]
- Garber, D. Thinking Historically/Thinking Analytically; Oxford Scholarship Online; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Drolet, A.; Bodapati, A.V.; Suppes, P.; Rossi, B.; Hochwarter, H. Habits and Free Associations: Free Your Mind but Mind Your Habits. J. Assoc. Consum. Res. 2017, 2, 293–305. [Google Scholar] [CrossRef]
- Graf-Vlachy, L.; Buhtz, K.; König, A. Social influence in technology adoption: Taking stock and moving forward. Manag. Rev. Q. 2018, 68, 37–76. [Google Scholar] [CrossRef]
- Brown, S.A.; Venkatesh, V. Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle. MIS Q. 2005, 29, 399–426. [Google Scholar] [CrossRef]
- Sánchez, E.M. Análisis de la influencia de la familia en los hábitos lectores de sus hijas e hijos: Un estudio etnográfico. Contextos Educativos. Revista De Educación 2001, 4, 177–196. [Google Scholar] [CrossRef]
- Martínez-Ávila, D.; Segundo, R.S.; Zurian, F.A. Retos y oportunidades en organización del conocimiento en la intersección con las tecnologías de la información. Revista Española De Documentación Científica 2014, 37. [Google Scholar] [CrossRef] [Green Version]
- Rashid, F.; Edmondson, A.C. Risky TrustHow Multi-Entity Teams Build Trust despite High Risk. In Restoring Trust in Organizations and Leaders: Enduring Challenges and Emerging Answers; Oxford University Press: Oxford, UK, 2012; pp. 129–150. [Google Scholar] [CrossRef]
- Durkheim, E. El Suicidio; Akal: Madrid, Spain, 1989. [Google Scholar]
- Santos, F.R. Redes de amistad, felicidad y familia. Reis 1994, 1, 73–89. [Google Scholar] [CrossRef]
- Limayem, M.; Hirt, S.G. Force of habit and information systems usage: Theory and initial validation. J. Assoc. Inf. Syst. 2003, 4, 6597. [Google Scholar] [CrossRef]
- Mcknight, D.H.; Choudhury, V.; Kacmar, C. The impact of initial consumer trust on intentions to transact with a web site: A trust building model. J. Strateg. Inf. Syst. 2002, 11, 297–323. [Google Scholar] [CrossRef]
- Lai, I.K.W.; Guicheng, S. The impact of privacy concerns on the intention for continued use of an integrated mobile instant messaging and social network platform. Int. J. Mob. Commun. 2015, 13, 641–669. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.; Boudreau, M.C. Structural equation modeling and regression: Guidelines for research practice. Commun. Assoc. Inf. Syst. 2000, 4, 1–77. [Google Scholar]
- Pavlou, P.A. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. Int. J. Electron. Commer. 2003, 7, 101–134. [Google Scholar]
- Babin, B.J.; Babin, L. Seeking Something Different? A Model of Schema Typicality, Consumer Affect, Purchase Intentions and Perceived Shopping Value. J. Bus. Res. 2001, 54, 89–96. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Liaw, S. The theory of planned behaviour applied to search engines as a learning tool. J. Comput. Assist. Learn. 2004, 20, 283–291. [Google Scholar] [CrossRef]
- Nillos, B.E. Performance Expectancy, Effort Expectancy, Social Influence and Facilitating Conditions are Factors that Influence Rural Health Workers in the Use of Wireless Access for Health and Perception of Behavior of their Pregnant Patients. JPAIR Multidiscip. Res. 2016, 24. [Google Scholar] [CrossRef]
- Rayburn, W.E.; Ramaprasad, A. Three Strategies for the Use of Distance Learning Technology in Higher Education. Web-Based Instruct. Learn. 2012, 27–42. [Google Scholar] [CrossRef]
- Antoniou, D.; Plegas, Y.; Tsakalidis, A.; Tzimas, G.; Viennas, E. Dynamic refinement of search engines results utilizing the user intervention. J. Syst. Softw. 2012, 85, 1577–1587. [Google Scholar] [CrossRef]
- Chang, S.E.; Shen, W.C.; Liu, A.Y. Why mobile users trust smartphone social networking services? A PLS-SEM approach. J. Bus. Res. 2016, 69, 4890–4895. [Google Scholar] [CrossRef]
- Tamayo, M. El Proyecto de la Investigación Científica; Editorial Limusa Noriega Editores: Ciudad de México, Mexico, 2007. [Google Scholar]
- Rodriguez Peñuelas, M.A. Métodos de Investigación: Diseño de Proyectos y Desarrollo de Tesis en Ciencias Administrativas, Organizacionales y Sociales; Nº 69; Universidad Autónoma de Sinaloa: Culiacán, Mexico, 2010. [Google Scholar]
- Hernández, C.R.; Fernández, C.; Baptista, P. Metodología de la Investigación; Mc-Graw Hill: México City, Mexico, 2007. [Google Scholar]
- Hadadgar, A.; Changiz, T.; Masiello, I.; Dehghani, Z.; Mirshahzadeh, N.; Zary, N. Applicability of the theory of planned behavior in explaining the general practitioners eLearning use in continuing medical education. BMC Med. Educ. 2016, 16, 215. [Google Scholar] [CrossRef] [PubMed]
- Trespalacios, J.A.; Vázquez, R.; Bello, L. Investigación de Mercados. Métodos de Recogida de Información para la Toma de Decisiones en Marketing; Thomson-Paraninfo: Madrid, Spain, 2005. [Google Scholar]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Nurosis, M.J. SPSS. Statistical Data Análisis; SPSS Inc.: Chicago, IL, USA, 1993. [Google Scholar]
- Nunnally, J.C. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Luque, T. Técnicas de Análisis de Datos en Investigación de Mercados; Ediciones Pirámide: Madrid, Spain, 2000. [Google Scholar]
- Bagozzi, R.Y.B.; Baumgartner, P.J.H. The evaluation of structural equation models and hypothesis testing. Princ. Mark. Res. 1994, 386–419. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Análisis Multivariante; Prentice Hall: Madrid, Spain, 1999; Volume 491. [Google Scholar]
- Hildebrandt, L. Consumer retail satisfaction in rural areas: A reanalysis of survey data. J. Econ. Psychol. 1987, 8, 19–42. [Google Scholar] [CrossRef]
- Joreskog, K.G.; Sorbom, D. LISREL VII: A Guide to the Program and Applications; SPSS: Chicago, IL, USA, 1988. [Google Scholar]
- Sharma, S. Applied Multivariate Techniques; John Wiley& Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Bentler, P.M.; Bonett, D.G. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
- Steiger, J.H. Structural model evaluation and modification: An interval estimation approach. Multivar. Behav. Res. 1990, 25, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Edwards, J.R.; Lambert, L.S. Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychol. Methods 2007, 12, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Saura, J.R.; Palos-Sanchez, P.R.; Rios Martin, M.A. Attitudes to environmental factors in the tourism sector expressed in online comments: An exploratory study. Int. J. Environ. Res. Public Health 2018, 15, 553. [Google Scholar] [CrossRef] [PubMed]
- Palos-Sanchez, P.R.; Robina Ramirez, R.; Cerda Suarez, L.M. Ethics of online reputation, personal brand and privacy in cloud computing: Protection of users against the right to forget. Biblios-Rev. Bibliotecol. Cienc. Inf. 2018, 11, 17–31. [Google Scholar]
Search Engine Type | Description | Examples |
---|---|---|
Social Search Engines | These search engines have social purposes in which a percentage of the income is allocated to projects related to sustainability. They enable searching for images, video, music, and web pages. | Ecosia Lilo |
Science Search Engines | These search engines allow access to scientific-technical materials through specific searches. The bibliographical production on the analyzed subject is gathered. | Google Scholar Scientific Commons Sci-Hub |
General Search Engines | These search engines are the most widely used ones and contain files stored on web servers that, with each search, offer the results of general content that is most relevant to the user. | Google Yahoo Bing |
Safe search Engines | These searchers allow safe searches for children. They do not show icon images to prevent display of inappropriate images. | Safe Search for kids |
Local Search Engines | These local search engines help to find videos, news, blogs, web pages, radio, and images. | Rambler (Rusia) Goo (Japón) Baidu (China) |
Social Media Search Engines | These search engines are created specifically to find content from social networks, including blogs, microblogs, comments, bookmarks, and videos. Some offer the possibility of creating alerts to track real-time topics of interest. | Social mention Social Search TagBoard |
Social Search Engine | Description |
---|---|
Lilo | A search engine that finances sustainable projects related to water. Each time a user performs a search, s/he gets a drop of water; collecting the necessary amount of drops can finance a relevant project. This search engine is focused on innovation and creativity. |
Ecosia | A search engine that allocates 80% of the benefits it obtains to finance sustainable projects; specifically, a portion of the profits goes to planting trees. |
Good Search | A search engine that allocates a percentage of the purchases made through the platform to over 100,000 projects. It also offers discounts on products available for purchase. |
Znout | A search engine that purchases CO2 certificates to amplify its growth and sustainability in future projects. Revenue is obtained from the performed searches. |
Benefind | A search engine that donates €0.5 to a social project supported by innovation and creativity every time a user performs a search. It has been active since 2010. |
Location | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|
Mexico | 78,949.6 | 79,752.3 | 80,587.0 | 80,213.4 | 81,588.1 | 82,733.7 | 81,651.2 | 84,928.8 | 85,664.2 |
Russia | 74,633.0 | 74,354.0 | 69,915.0 | 72,685.0 | 68,652.0 | 66,296.0 | 65,104.0 | 64,807.0 | 62,163.0 |
Australia | 14,613.0 | 13,842.0 | 13,702.0 | 16,351.0 | 20,133.0 | 19,364.0 | 18,222.0 | ||
Poland | 12,027.0 | 11,365.0 | 11,517.0 | 11,645.0 | 11,911.0 | 11,478.0 | 11,242.0 | 11,308.5 | 11,093.5 |
Greece | 9471.6 | 9934.6 | 9934.9 | 9924.5 | 9916.3 | 9907.7 | |||
Costa Rica | 384.5 | 486.4 | 853.3 | 1066.2 | 1246.1 | 1347.4 | 1656.2 | 1990.3 | |
Estonia | 1834.3 | 1605.3 | 1388.0 | 1842.0 | 1873.9 | 1631.0 | 1747.8 | 1724.1 | 1615.3 |
Czech Republic | 1970.0 | 1988.0 | 1948.0 | 1950.0 | 1886.0 | 1840.0 | 1650.0 | 1650.0 | 1603.1 |
Israel | 1689.0 | 1595.0 | 1313.0 | 1340.0 | 1266.0 | 1318.0 | 1296.0 | 1271.0 | 1145.0 |
Slovenia | 935.0 | 1040.0 | 943.0 | 925.0 | 851.0 | 781.1 | 892.5 | 977.4 | 895.1 |
Lilo.org | Description |
---|---|
Foundation | 2014 |
Headquarters | Paris/France |
Industry | Internet, Social Business |
Product and Services | Internet Search Services |
Short Description | Independent Non-profit website |
Partners | 130 businesses with social projects |
URL | www.lilo.org |
Employees | 3 |
Total Revenue (estimated) | €60,675 |
IT infrastructure | Bing, Yahoo, and Google |
Name of the Project | Description | Waterdrop Donations |
---|---|---|
The Oasis project of Colibris | Building an environmentally friendly society | 44.467€ |
Arutam Zero Deforestation | Combating deforestation and global warming | 22.346€ |
Agrisud International | Creating very small-scale sustainable farms | 14.669€ |
Ecological cookers | Stock-pilling CO2 by encouraging the use of solar cookers | 3.514€ |
GreenWave | Saving seas | 1513€ |
Mazí Mas | Supporting women from migrant and refugee communities | 840€ |
Author | Description | Aim | Object |
---|---|---|---|
Hsiu-Fen [30] | Explaining the behavioral intention by identifying the key factors that favor users’ participation in virtual communities. The model is based on the Theory of Planned Behavior (TPB) and includes variables such as perceived utility, ease of use, facilitating conditions, trust. The analysis is done with SEM (Structural Equation Modeling). | Behavioral intention | Virtual communities |
Lu, Yao, & Yu [31] | Studying the keys factors determine the adoption of mobile phones as devices to connect to the Internet and search it. The analysis is done with SEM and the AMOS (Analysis of Moment Structures) as a statistical model in which constructs such as Social Influence, Perceived ease of use, Perceived usefulness or Perceived innovativeness are included. | Behavioral intention | Wireless Internet services |
Sung, Jeong, Jeong & Shin [32] | Identifying the factors that determine the intention to adopt mobile technologies for learning. The analysis is carried out with modeling with structural equations (SEM) using the AMOS. Among the constructs are the social influence, the expectation of effort, and self-efficacy. The results show that those responsible for mobile learning had to focus on user self-efficacy to improve their behavioral intention. | Behavioral intention | Mobile devices for e-learning |
Morgan-Thomas & Veloutsou [33] | Developing an on-line brand adoption model that integrates the Information Systems and marketing approach. SEM is used for the analysis. Among the studied factors are trust, perceived usefulness, and behavioral intention. | Technology acceptance/Behavioral intention | On-line brands |
Tai [34] | Analyzing factors such as habit, hedonic motivations, and utilitarian motivations that influence the behavioral intentions of users vis-à-vis search engines. The AMOS is used for data analysis. | Behavioral intention | Meta search engines |
Constructs Included SEM | Scale Items A | Mean | (s.d.) B | Item-Total Correlation | Loadings | Exploratory Factor Analysis |
---|---|---|---|---|---|---|
Bartlett’s Test of Sphericity 1 Kaiser-Meyer_Oklin Index | ||||||
Effort Expectancy (α = 0.843) | EE1 | 4.45 | 0.717 | 0.667 | 0.816 | χ2 (sig.): 711.226 (0.000) |
EE2 | 4.29 | 0.759 | 0.707 | 0.847 | KMO: 0.811 | |
EE3 | 4.47 | 0.699 | 0.716 | 0.851 | Measure of simple adequacy: (0.832–0.848) | |
EE4 | 4.32 | 0.742 | 0.628 | 0.787 | % Variance: 68.18 | |
Influence Social (α = 0.944) | IS1 | 2.93 | 1.139 | 0.859 | 0.937 | χ2 (sig.): 1254.283 (0.000) |
IS2 | 2.90 | 1.148 | 0.907 | 0.960 | KMO: 0.762 | |
IS3 | 2.94 | 1.156 | 0.881 | 0.948 | Measure of simple adequacy: (0.819–0.763) | |
IS4 | 4.16 | 0.996 | 0.131 | deleted | % Variance: 89.88 | |
Facilitating Conditions (α = 0.827) | CF1 | 4.40 | 0.795 | 0.713 | 0.860 | χ2 (sig.): 728.369 (0.000) |
CF2 | 4.26 | 0.847 | 0.692 | 0.848 | KMO: 7.99 | |
CF3 | 4.42 | 0.766 | 0.738 | 0.874 | Measure of simple adequacy: (0.788–0.896) | |
CF4 | 4.06 | 0.883 | 0.497 | 0.675 | % Variance: 67.01 | |
Habits (α = 0.753) | H1 | 4.16 | 0.896 | 0.618 | 0.843 | χ2 (sig.): 323.361 (0.000) |
H2 | 3.25 | 1.071 | 0.238 | deleted | KMO: 0.688 | |
H3 | 4.09 | 0.876 | 0.583 | 0.821 | Measure of simple adequacy: (0.661–0.724) | |
H4 | 4.15 | 1.003 | 0.552 | 0.795 | % Variance: 67.26 | |
Behavioural Intention (α = 0.820) | B1 | 4.16 | 0.930 | 0.665 | 0.830 | χ2 (sig.): 656.727 (0.000) |
B2 | 3.90 | 1.015 | 0.676 | 0.833 | KMO: 0.798 | |
B3 | 4.22 | 0.910 | 0.713 | 0.860 | Measure of simple adequacy: (0.788–0.870) | |
B4 | 3.67 | 1.104 | 0.538 | 0.717 | % Variance: 65.90 | |
Trust (α = 0.861) | T1 T2 T3 | 3.48 3.61 3.50 | 0.992 0.968 1.037 | 0.751 0.750 0.711 | 0.893 0.893 0.870 | χ2 (sig.): 622.871 (0.000) KMO: 0.733 Measure of simple adequacy: (0.717–0.770) % Variance: 78.38 |
Hedonics Motivation (α Cronbach: 0.853) | HM1 HM2 HM3 | 3.69 3.53 3.86 | 0.958 1.010 1.019 | 0.706 0.779 0.692 | 0.870 0.909 0.860 | χ2 (sig.): 603.720 (0.000) KMO: 0.715 Measure of simple adequacy: (0.735–0.757) % Variance: 77.40 |
Scales a | β | CR | AVE |
---|---|---|---|
Effort Expectancy (α = 0.843) | |||
EE1 Learning to use my Internet search engine is easy for me EE2 My interaction with the Internet search engine is clear EE3 I find my Internet search engine easy to use EE4 It is easy for me to be proficient in using my favourite Internet search engine | 0.726 0.777 0.804 0.732 | 0.91 | 0.72 |
Influence Social (α = 0.944) | |||
IS1 The people that are important to me think that I should use my Internet search engine more IS2 The people that influence my behavior think that I should use my Internet search engine more IS3 People whose opinions I value think that I should use my Internet search engine more | 0.888 0.958 0.917 | 0.93 | 0.81 |
Facilitating Conditions (α = 0.827) | |||
CF1 I have necessary resources to use an Internet search engine CF2 I have necessary knowledge to use an Internet search engine CF3 My Internet search engine is compatible with other technologies I use (Browser, Operating, System, etc.) CF4 I can get help from other users when I have difficulty using my search engine on the Internet | 0.819 0.782 0.840 0.558 | 0.88 | 0.66 |
Habit (α = 0.753) | |||
H1 Using my Internet search engine could become a habit for me H3 Using my Internet search engine could become natural for me H4 Using my Internet search engine could become something I do without thinking | 0.788 0.688 0.665 | 0.78 | 0.55 |
Behavioral Intention (α = 0.820) | |||
BI1 I intend to use my Internet search engine in the future BI2 I will always try to use my Internet search engine in mu day to day life BI3 I plan to use my Internet search engine soon BI4 I intend to recommend the use of my Internet research engine to other users | 0.763 0.780 0.816 0.598 | 0.83 | 0.55 |
Trust (α = 0.861) | |||
T1 My Internet search engine is honest T2 My Internet search engine understands the users T3 My Internet search engine has good intentions | 0.825 0.841 0.802 | 0.86 | 0.68 |
Hedonics Motivation (α = 0.853) | |||
HM1 I enjoy using my Internet search engine HM2 When I use my search engine on the Internet, I have fun HM3 Using my search engine on the Internet, in my free time, entertains me | 0.831 0.856 0.754 | 0.86 | 0.67 |
Square Root AVE | (1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|---|
Effort Expectancy (1) | 0.88 | 0.843 a | 0.001 d | 0.546 | 0.326 | 0.282 | 0.141 | 0.142 |
Influence Social (2) | 0.9 | 0.043 b (0.079–0.033) c | 0.944 | 0.003 | 0.028 | 0.027 | 0.078 | 0.081 |
Facilitating Conditions (3) | 0.81 | 0.739 ** (0.302–0.198) | 0.061 (0.108–0.028) | 0.827 | 0.495 | 0.310 | 0.145 | 0.123 |
Habit (4) | 0.74 | 0.571 ** (0.261–0.157) | 0.169 ** (0.200–0.040) | 0.704 ** (0.391–0.255) | 0.753 | 0.490 | 0.225 | 0.276 |
Behavioral Intention (5) | 0.74 | 0.534 ** (0.247–0.147) | 0.167 ** (0.198–0.042) | 0.557 ** (0.319–0.195) | 0.700 ** (0.426–0.274) | 0.820 | 0.282 | 0.378 |
Trust (6) | 0.82 | 0.376 ** (0.212–0.108) | 0.280 ** (0.321–0.141) | 0.381 ** (0.267–0.139) | 0.475 ** (0.350–0.198) | 0.531 ** (0.384–0.232) | 0.861 | 0.488 |
Hedonics Motivation (7) | 0.82 | 0.378 ** (0.208–0.104) | 0.286 ** (0.318–0.142) | 0.351 ** (0.243–0.119) | 0.526 ** (0.371–0.219) | 0.615 ** (0.429–0.268) | 0.699 ** (0.546–0.362) | 0.853 |
Variables | Effects | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | Facility Conditions | Direct effects | 0.747 *** | 0.710 *** | |||
Indirect effects | 0.383 | 0.344 | 0.558 | ||||
Total effects | 0.747 | 0.710 | 0.383 | 0.344 | 0.558 | ||
2 | Social Influence | Direct effects | 0.130 ** | 0.213 *** | 0.105 *** | ||
Indirect effects | 0.049 | 0.164 | 0.152 | ||||
Total effects | 0.130 | 0.261 | 0.269 | 0.152 | |||
3 | Effort Expectancy | Direct effects | 0.158 * | 0.140 * | 0.160 *** | ||
Indirect effects | 0.099 | 0.083 | |||||
Total effects | 0.158 | 0.239 | 0.243 | ||||
4 | Habits | Direct effects | 0.373 *** | 0.449 *** | |||
Indirect effects | 0.234 | 0.082 | |||||
Total effects | 0.373 | 0.234 | 0.531 | ||||
5 | Trust | Direct effects | 0.627 *** | ||||
Indirect effects | 0.219 | ||||||
Total effects | 0.627 | 0.219 | |||||
6 | Hedonic Motivation | Direct effects | 0.349 *** | ||||
Indirect effects | |||||||
Total effects | 0.349 |
Hypothesis | Relations | Result |
---|---|---|
H1 | Facility Condition → Behavioral Intention | Not supported |
H2 | Social Influence → Behavioral Intention | Not supported |
H3 | Facility Condition → Effort Expectancy | Supported |
H4 | Facility Condition → Habits | Supported |
H5 | Social Influence → Habits | Supported |
H6 | Social Influence → Trust | Supported |
H7 | Social Influence → Hedonic Motivation | Supported |
H8 | Effort Expectancy → Hedonic Motivation | Supported |
H9 | Effort Expectancy → Trust | Supported |
H10 | Habits → Trust | Supported |
H11 | Trust → Hedonic | Supported |
H12 | Effort Expectancy → Behavioral Intention | Supported |
H13 | Habits → Behavioral Intention | Supported |
H14 | Trust → Behavioral Intention | Not supported |
H15 | Hedonic Motivation → Behavioral Intention | Supported |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Menendez, A.; Saura, J.R.; Palos-Sanchez, P.R.; Alvarez-Garcia, J. Understanding User Behavioral Intention to Adopt a Search Engine that Promotes Sustainable Water Management. Symmetry 2018, 10, 584. https://doi.org/10.3390/sym10110584
Reyes-Menendez A, Saura JR, Palos-Sanchez PR, Alvarez-Garcia J. Understanding User Behavioral Intention to Adopt a Search Engine that Promotes Sustainable Water Management. Symmetry. 2018; 10(11):584. https://doi.org/10.3390/sym10110584
Chicago/Turabian StyleReyes-Menendez, Ana, Jose Ramon Saura, Pedro R. Palos-Sanchez, and Jose Alvarez-Garcia. 2018. "Understanding User Behavioral Intention to Adopt a Search Engine that Promotes Sustainable Water Management" Symmetry 10, no. 11: 584. https://doi.org/10.3390/sym10110584