On the Existence of the Solutions of a Fredholm Integral Equation with a Modified Argument in Hölder Spaces
Abstract
:1. Introduction
2. Preliminaries and Notations
3. Main Result
- (i)
- .
- (ii)
- is a continuous function such that there exists a constant such that:
- (iii)
- The operator is continuous on with respect to the norm , and there exists a function , which is non-decreasing such that the inequality holds:
- (iv)
- There exists a positive solution of the inequality:
4. Examples
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kulenovic, M.R.S. Oscillation of the Euler differential equation with delay. Czech. Math. J. 1995, 45, 1–16. [Google Scholar]
- Mureşan, V. On a class of Volterra integral equations with deviating argument. Stud. Univ. Babes-Bolyai Math. 1999, 44, 47–54. [Google Scholar]
- Mureşan, V. Volterra integral equations with iterations of linear modification of the argument. Novi Sad J. Math. 2003, 33, 1–10. [Google Scholar]
- Banaś, J.; Nalepa, R. On the space of functions with growths tempered by a modulus of continuity and its applications. J. Funct. Spaces Appl. 2013. [Google Scholar] [CrossRef]
- Caballero, J.; Abdalla, M.; Sadarangani, K. Solvability of a quadratic integral equation of fredholm type in Hölder spaces. Electron. J. Differ. Equ. 2014, 31, 1–10. [Google Scholar] [CrossRef]
- Caballero, M.J.; Nalepa, R.; Sadarangani, K. Solvability of a quadratic integral equation of Fredholm type with Supremum in Hölder Spaces. J. Funct. Spaces Appl. 2014. [Google Scholar] [CrossRef]
- Schauder, J. Der Fixpunktsatz in Funktionalriiumen. Stud. Math. 1930, 2, 171–180. [Google Scholar] [CrossRef]
- López, B.; Harjani, J.; Sadaragani, K. Existence of positive solutions in the space of Lipschitz functions to a class of fractional differential equations of arbitrary order. Racsam 2018, 112, 1281–1294. [Google Scholar] [CrossRef]
- Bacoṯiu, C. Volterra-Fredholm nonlinear systems with modified argument via weakly Picard operators theory. Carpathian J. Math. 2008, 24, 1–19. [Google Scholar]
- Benchohra, M.; Darwish, M.A. On unique solvability of quadratic integral equations with linear modification of the argument. Miskolc Math. Notes 2009, 10, 3–10. [Google Scholar]
- Dobriṯoiu, M. Analysis of a nonlinear integral equation with modified argument from physics. Int. J. Math. Models Methods Appl. Sci. 2008, 2, 403–412. [Google Scholar]
- Kato, T.; Mcleod, J.B. The functional-differential equation y′(x) = ay(λx) + by(x). Bull. Am. Math. Soc. 1971, 77, 891–937. [Google Scholar]
- Lauran, M. Existence results for some differential equations with deviating argument. Filomat 2011, 25, 21–31. [Google Scholar] [CrossRef]
- Mureşan, V. A functional-integral equation with linear modification of the argument via weakly Picard operators. Fixed Point Theory 2008, 9, 189–197. [Google Scholar]
- Mureşan, V. A Fredholm-Volterra integro-differential equation with linear modification of the argument. J. Appl. Math. 2010, 3, 147–158. [Google Scholar]
- Agarwal, R.P.; O’Regan, D. Infinite Interval Problems for Differential, Difference and Integral Equations; Springer: Dordrecht, The Netherlands, 2001; ISBN 978-94-015-9171-3. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Wong, P.J.Y. Positive Solutions of Differential, Difference and Integral Equations; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Case, K.M.; Zweifel, P.F. Linear Transport Theory; Addison Wesley: Reading, MA, USA, 1967. [Google Scholar]
- Chandrasekhar, S. Radiative Transfer; Dover Publications: New York, NY, USA, 1960. [Google Scholar]
- Hu, S.; Khavani, M.; Zhuang, W. Integral equations arising in the kinetic theory of gases. J. Appl. Anal. 1989, 34, 261–266. [Google Scholar] [CrossRef]
- Kelly, C.T. Approximation of solutions of some quadratic integral equations in transport theory. J. Integral Equ. 1982, 4, 221–237. [Google Scholar]
- Banas, J.; Lecko, M.; El-Sayed, W.G. Existence theorems of some quadratic integral equation. J. Math. Anal. Appl. 1998, 222, 276–285. [Google Scholar] [CrossRef]
- Banas, J.; Caballero, J.; Rocha, J.; Sadarangani, K. Monotonic solutions of a class of quadratic integral equations of Volterra type. Comput. Math. Appl. 2005, 49, 943–952. [Google Scholar] [CrossRef]
- Caballero, J.; Rocha, J.; Sadarangani, K. On monotonic solutions of an integral equation of Volterra type. J. Comput. Appl. Math. 2005, 174, 119–133. [Google Scholar] [CrossRef]
- Darwish, M.A. On solvability of some quadratic functional-integral equation in Banach algebras. Commun. Appl. Anal. 2007, 11, 441–450. [Google Scholar]
- Darwish, M.A.; Ntouyas, S.K. On a quadratic fractional Hammerstein-Volterra integral equations with linear modification of the argument. Nonlinear Anal. Theory Methods Appl. 2011, 74, 3510–3517. [Google Scholar] [CrossRef]
- Darwish, M.A. On quadratic integral equation of fractional orders. J. Math. Anal. Appl. 2005, 311, 112–119. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Banas, J.; Banas, K.; O’Regan, D. Solvability of a quadratic Hammerstein integral equation in the class of functions having limits at infinity. J. Integral Equ. Appl. 2011, 23, 157–181. [Google Scholar] [CrossRef]
- Marin, M. An approach of a heat-flux dependent theory for micropolar porous media. Meccanica 2016, 51, 1127–1133. [Google Scholar] [CrossRef]
- Marin, M. Some estimates on vibrations in thermoelasticity of dipolar bodies. J. Vib. Control 2010, 16, 33–47. [Google Scholar] [CrossRef]
- Caballero, J.; Darwish, M.A.; Sadarangani, K. Positive Solutions in the Space of Lipschitz Functions for Fractional Boundary Value Problems with Integral Boundary Conditions. Mediterr. J. Math. 2017. [Google Scholar] [CrossRef]
- Cabrera, I.; Harjani, J.; Sadarangani, K. Existence and Uniqueness of Solutions for a Boundary Value Problem of Fractional Type with Nonlocal Integral Boundary Conditions in Hölder Spaces. Mediterr. J. Math. 2018. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temizer Ersoy, M.; Furkan, H. On the Existence of the Solutions of a Fredholm Integral Equation with a Modified Argument in Hölder Spaces. Symmetry 2018, 10, 522. https://doi.org/10.3390/sym10100522
Temizer Ersoy M, Furkan H. On the Existence of the Solutions of a Fredholm Integral Equation with a Modified Argument in Hölder Spaces. Symmetry. 2018; 10(10):522. https://doi.org/10.3390/sym10100522
Chicago/Turabian StyleTemizer Ersoy, Merve, and Hasan Furkan. 2018. "On the Existence of the Solutions of a Fredholm Integral Equation with a Modified Argument in Hölder Spaces" Symmetry 10, no. 10: 522. https://doi.org/10.3390/sym10100522