Is More Green Space Always Better for Healthy Aging? Exploring Spatial Threshold and Mediation Effects in the United States
Abstract
1. Introduction
2. Literature Review
2.1. Mechanisms and Existing Evidence on the Impact of Green Space Equity on Elderly Mental and Physical Health
2.2. Nonlinear Characteristics and Threshold Effects of Green Accessibility and Diversity on Health
2.3. Research Framework
3. Data and Methods
3.1. Study Area
3.2. Research Methods
3.2.1. Panel Regression
3.2.2. XGboost
3.2.3. Mediation Effect Model
3.2.4. Urban Green Space Analysis
3.3. Variable Construction
3.4. Data Acquisition
4. Results
4.1. Spatial Analysis
4.2. Impact Factors Analysis
4.3. XGBoost Analysis
4.4. Mediation Analysis Results
5. Discussion
5.1. Multidimensional Impact Mechanisms of Green Space Equity on Older Adults’ Health: Integrating Linear and Nonlinear Evidence
5.2. Indirect Pathways of Green Space Health Effects: Mediating Role of Socioeconomic Factors
5.3. Strategy Optimization for Green Space Planning
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| Green Accessibility => Marital Status => General Health | Green Accessibility => Education => General Health | Green Accessibility => Green Diversity => General Health | Green Diversity => Marital Status => General Health | Green Diversity => Education => General Health | |
|---|---|---|---|---|---|
| All effect(c) | −0.360 *** (0.087) | −0.360 *** (0.087) | −0.360 *** (0.087) | −0.329 *** (0.058) | −0.329 *** (0.058) |
| Mediation effect (a × b) | 0.099 ** (0.032) | −0.104 ** (0.053) | −0.172 *** (0.052) | 0.080 ** (0.026) | −0.244 *** (0.039) |
| Direct effect (c′) | −0.459 *** (0.082) | −0.257 *** (0.069) | −0.188 ** (0.094) | −0.409 *** (0.053) | −0.085 * (0.049) |
| a | 0.279 ** (0.094) | 0.164 * (0.085) | 0.622 *** (0.066) | 0.214 *** (0.063) | 0.391 *** (0.054) |
| b | 0.354 *** (0.042) | −0.635 *** (0.039) | −0.276 *** (0.063) | 0.372 *** (0.041) | −0.624 *** (0.042) |
| a × b (95%BootCI) | [0.038, 0.162] | [−0.211, −0.004] | [−0.286, −0.082] | [0.028, 0.131] | [−0.325, −0.173] |
| Mediation Effect percent | 0.099 (−27.5%) | −0.104 (28.8%) | −0.172 (47.7%) | 0.080 (−24.2%) | −0.244 (74.2%) |
| Conclusion | Partial mediation | Partial mediation | Partial mediation | Partial mediation | Complete mediation |
| Green Accessibility => Marital Status => Mental Health | Green Accessibility => Education => Mental Health | Green Accessibility => Green Diversity => Mental Health | Green Diversity => Marital Status => Mental Health | Green Diversity => Education => Mental Health | |
|---|---|---|---|---|---|
| All effect(c) | 0.090 (0.095) | 0.090 (0.095) | 0.090 (0.095) | 0.052 (0.064) | 0.052 (0.064) |
| Mediation effect (a × b) | 0.059 ** (0.021) | −0.019 * (0.014) | 0.020 (0.047) | 0.046 ** (0.017) | −0.055 ** (0.026) |
| Direct effect (c′) | 0.031 (0.094) | 0.109 (0.095) | 0.070 (0.105) | 0.006 (0.064) | 0.107 (0.068) |
| a | 0.279 ** (0.094) | 0.164 * (0.085) | 0.622 *** (0.066) | 0.214 *** (0.063) | 0.391 *** (0.054) |
| b | 0.213 *** (0.049) | −0.116 ** (0.054) | 0.032 (0.071) | 0.214 *** (0.049) | −0.141 ** (0.057) |
| a × b (95%BootCI) | [0.021, 0.104] | [−0.053, 0.002] | [−0.068, 0.116] | [0.015, 0.083] | [−0.109, −0.008] |
| Mediation Effect percent | 0.059 (65.9%) | −0.019 (−21.1%) | 0.020 (22.3%) | 0.046 (88.3%) | −0.055 (−106.1%) |
| Conclusion | Complete mediation | Not significant | Not significant | Complete mediation | Complete mediation |
| Green Accessibility => Marital Status => Physical Health | Green Accessibility => Education => Physical Health | Green Accessibility => Green Diversity => Physical Health | Green Diversity => Marital Status => Physical Health | Green Diversity => Education => Physical Health | |
|---|---|---|---|---|---|
| All effect(c) | −0.121 (0.093) | −0.121 (0.093) | −0.121 (0.093) | −0.183 ** (0.062) | −0.183 ** (0.062) |
| Mediation effect (a × b) | 0.062 ** (0.023) | −0.040 ** (0.023) | −0.113 ** (0.050) | 0.051 ** (0.019) | −0.086 *** (0.027) |
| Direct effect (c′) | −0.182 ** (0.092) | −0.081 (0.091) | −0.008 (0.102) | −0.234 *** (0.061) | −0.098 (0.065) |
| a | 0.279 ** (0.094) | 0.164 * (0.085) | 0.622 *** (0.066) | 0.214 *** (0.063) | 0.391 *** (0.054) |
| b | 0.221 *** (0.048) | −0.243 *** (0.052) | −0.181 ** (0.068) | 0.237 *** (0.047) | −0.219 *** (0.055) |
| a × b (95%BootCI) | [0.021, 0.109] | [−0.091, −0.001] | [−0.218, −0.022] | [0.016, 0.092] | [−0.143, −0.038] |
| Mediation Effect percent | 0.062 (−51.1%) | −0.040 (32.9%) | −0.113 (93.4%) | 0.051 (−27.6%) | −0.086 (46.8%) |
| Conclusion | Partial mediation | Complete mediation | Complete mediation | Partial mediation | Complete mediation |
References
- Ifeagwu, S.C.; Yang, J.C.; Parkes-Ratanshi, R.; Brayne, C. Health Financing for Universal Health Coverage in Sub-Saharan Africa: A Systematic Review. Glob. Health Res. Policy 2021, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Clarke, P.; Erreygers, G. Defining and Measuring Health Poverty. Soc. Sci. Med. 2020, 244, 112633. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, Y.; Pan, J. Optimization for Locating Emergency Medical Service Facilities: A Case Study for Health Planning from China. Risk Manag. Healthc. Policy 2021, 14, 1791–1802. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, N.; Du, W.; Li, Y.; Zheng, X. Multi-Source Sensor Based Urban Habitat and Resident Health Sensing: A Case Study of Wuhan, China. Build. Environ. 2021, 198, 107883. [Google Scholar] [CrossRef]
- Chen, Y.; Amani-Beni, M.; Zhang, R.; Wei, D. Evolution of Population Distribution and Its Influencing Factors in the Poverty-Stricken Mountainous Region of Southwest China from 2000 to 2020. Humanit. Soc. Sci. Commun. 2024, 11, 1659. [Google Scholar] [CrossRef]
- Such, E.; Smith, K.; Woods, H.B.; Meier, P. Governance of Intersectoral Collaborations for Population Health and to Reduce Health Inequalities in High-Income Countries: A Complexity-Informed Systematic Review. Int. J. Health Policy Manag. 2022, 11, 2780. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Liu, Y.; Fan, P.; Yue, W. Environmental Factors for Outdoor Jogging in Beijing: Insights from Using Explainable Spatial Machine Learning and Massive Trajectory Data. Landsc. Urban Plan. 2024, 243, 104969. [Google Scholar] [CrossRef]
- Chen, J.; Kinoshita, T.; Li, H.; Luo, S.; Su, D. Which Green Is More Equitable? A Study of Urban Green Space Equity Based on Morphological Spatial Patterns. Urban For. Urban Green. 2024, 91, 128178. [Google Scholar] [CrossRef]
- Ma, G.; Pellegrini, P.; Han, H. The Vitality of Pocket Parks in High-Density Urban Areas. An Evaluation System from the Users’ Perspective in Southwest China. Urban For. Urban Green. 2025, 104, 128596. [Google Scholar] [CrossRef]
- Cong, S.; Nock, D.; Qiu, Y.L.; Xing, B. Unveiling Hidden Energy Poverty Using the Energy Equity Gap. Nat. Commun. 2022, 13, 2456. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, F.; Zhang, X.; Chen, J.; Li, P. Assessing Urban Renewal Efficiency via Multi-Source Data and DID-Based Comparison between Historical Districts. npj Herit. Sci. 2025, 13, 389. [Google Scholar] [CrossRef]
- Hui, E.C.; Chen, T.; Lang, W.; Ou, Y. Urban Community Regeneration and Community Vitality Revitalization through Participatory Planning in China. Cities 2021, 110, 103072. [Google Scholar] [CrossRef]
- Casprini, D.; Oppio, A.; Rossi, G.; Bengo, I. Managing Urban Green Areas: The Benefits of Collaborative Governance for Green Spaces. Land 2023, 12, 1872. [Google Scholar] [CrossRef]
- Wollburg, P.; Hallegatte, S.; Mahler, D.G. Ending Extreme Poverty Has a Negligible Impact on Global Greenhouse Gas Emissions. Nature 2023, 623, 982–986. [Google Scholar] [CrossRef]
- Erin, O.A.; Bamigboye, O.A.; Oyewo, B. Sustainable Development Goals (SDG) Reporting: An Analysis of Disclosure. J. Account. Emerg. Econ. 2022, 12, 761–789. [Google Scholar] [CrossRef]
- Xie, N.; Chen, A.; Wang, X.; Zhang, X. Does the BRI Contribute to Poverty Reduction in Countries along the Belt and Road? A DID-Based Empirical Test. Humanit. Soc. Sci. Commun. 2023, 10, 872. [Google Scholar] [CrossRef]
- Sun, Z.; Lu, Y.; Di, W.; Ta, N.; Wu, J. Spatial Variability in the Pathways of Green Space Quality on Life Satisfaction - Mediating Effects Based on Domain Satisfaction. J. Environ. Manage. 2024, 370, 122524. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Xu, L.; Yue, W.; Chen, J. Accessibility of Public Urban Green Space in an Urban Periphery: The Case of Shanghai. Landsc. Urban Plan. 2017, 165, 177–192. [Google Scholar] [CrossRef]
- Browning, M.H.E.M.; Rigolon, A.; McAnirlin, O. Where Greenspace Matters Most: A Systematic Review of Urbanicity, Greenspace, and Physical Health. Landsc. Urban Plan. 2022, 217, 104233. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, W.; La Rosa, D. Which Communities Have Better Accessibility to Green Space? An Investigation into Environmental Inequality Using Big Data. Landsc. Urban Plan. 2020, 204, 103919. [Google Scholar] [CrossRef]
- Lin, Y.-X.; Liu, Y. Let the City Heal You: Environment and Activity’s Distinct Roles in Leisure Restoration and Satisfaction. Cities 2024, 154, 105336. [Google Scholar] [CrossRef]
- Scopelliti, M.; Carrus, G.; Bonaiuto, M. Is It Really Nature That Restores People? A Comparison with Historical Sites with High Restorative Potential. Front. Psychol. 2019, 9, 2742. [Google Scholar] [CrossRef]
- Ye, Y.; Richards, D.; Lu, Y.; Song, X.; Zhuang, Y.; Zeng, W.; Zhong, T. Measuring Daily Accessed Street Greenery: A Human-Scale Approach for Informing Better Urban Planning Practices. Landsc. Urban Plan. 2019, 191, 103434. [Google Scholar] [CrossRef]
- Wu, C.; Du, Y.; Li, S.; Liu, P.; Ye, X. Does Visual Contact with Green Space Impact Housing Pricesʔ An Integrated Approach of Machine Learning and Hedonic Modeling Based on the Perception of Green Space. Land Use Policy 2022, 115, 106048. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, E.S.; Tan, P.Y.; Qi, J.; Ho, R.; Sia, A.; Waykool, R.; Song, X.P.; Olszewska-Guizzo, A.; Meng, L. Beyond Just Green: Explaining and Predicting Restorative Potential of Urban Landscapes Using Panorama-Based Metrics. Landsc. Urban Plan. 2024, 247, 105044. [Google Scholar] [CrossRef]
- Dong, Q.; Cai, J.; Chen, S.; He, P.; Chen, X. Spatiotemporal Analysis of Urban Green Spatial Vitality and the Corresponding Influencing Factors: A Case Study of Chengdu, China. Land 2022, 11, 1820. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Wang, H.; Yang, D. From Policy Synergy to Equitable Greenspace: Unveiling the Multifaceted Effects of Regional Cooperation upon Urban Greenspace Exposure Inequality in China’s Megacity-Regions. Appl. Geogr. 2025, 174, 103472. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Luo, S.; Su, D.; Zang, T.; Kinoshita, T.; Yang, L. How Do Economic Levels, Urbanization, and Infrastructure Investments Influence Inequality in Urban Green Space Exposure? Insights from Japanese Municipalities. Urban For. Urban Green. 2025, 104, 128649. [Google Scholar] [CrossRef]
- Santika, T.; Wilson, K.A.; Law, E.A.; St John, F.A.V.; Carlson, K.M.; Gibbs, H.; Morgans, C.L.; Ancrenaz, M.; Meijaard, E.; Struebig, M.J. Impact of Palm Oil Sustainability Certification on Village Well-Being and Poverty in Indonesia. Nat. Sustain. 2021, 4, 109–119. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban Form and Composition of Street Canyons: A Human-Centric Big Data and Deep Learning Approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
- Liu, D.; Lu, Y.; Jiang, Y. Exploring the Environmental Justice of Street Tree Provision: Adding Biodiversity to Automatic Assessment of Street-Level Greenery. Urban For. Urban Green. 2026, 115, 129184. [Google Scholar] [CrossRef]
- Liu, G.; Chen, H.; Yuan, Y.; Song, C. Indoor Thermal Environment and Human Health: A Systematic Review. Renew. Sustain. Energy Rev. 2024, 191, 114164. [Google Scholar] [CrossRef]
- Dong, L.; Bouey, J. Public Mental Health Crisis during COVID-19 Pandemic, China. Emerg. Infect. Dis. 2020, 26, 1616. [Google Scholar] [CrossRef]
- Seligman, H.K.; Levi, R.; Adebiyi, V.O.; Coleman-Jensen, A.; Guthrie, J.F.; Frongillo, E.A. Assessing and Monitoring Nutrition Security to Promote Healthy Dietary Intake and Outcomes in the United States. Annu. Rev. Nutr. 2023, 43, 409–429. [Google Scholar] [CrossRef] [PubMed]
- Siraji, M.A.; Spitschan, M.; Kalavally, V.; Haque, S. Light Exposure Behaviors Predict Mood, Memory and Sleep Quality. Sci. Rep. 2023, 13, 12425. [Google Scholar] [CrossRef]
- Liu, D.; Kwan, M.-P.; Kan, Z. Analysis of Urban Green Space Accessibility and Distribution Inequity in the City of Chicago. Urban For. Urban Green. 2021, 59, 127029. [Google Scholar] [CrossRef]
- Wu, J.; Peng, Y.; Liu, P.; Weng, Y.; Lin, J. Is the Green Inequality Overestimated? Quality Reevaluation of Green Space Accessibility. Cities 2022, 130, 103871. [Google Scholar] [CrossRef]
- Gao, H.; Wang, T.; Gu, S. A Study of Resident Satisfaction and Factors That Influence Old Community Renewal Based on Community Governance in Hangzhou: An Empirical Analysis. Land 2022, 11, 1421. [Google Scholar] [CrossRef]
- Chen, J.; Li, P.; Wang, H. Assessment of Influential Factors on Commute and Life Satisfaction in a Historic Campus-Adjacent Environment: Evidence from a Comparison Study of Twin Cities. J. Urban Plan. Dev. 2025, 151, 4024065. [Google Scholar] [CrossRef]
- Fan, L.; Cao, J.; Hu, M.; Yin, C. Exploring the Importance of Neighborhood Characteristics to and Their Nonlinear Effects on Life Satisfaction of Displaced Senior Farmers. Cities 2022, 124, 103605. [Google Scholar] [CrossRef]
- Basu, A.; Duvall, J.; Kaplan, R. Attention Restoration Theory: Exploring the Role of Soft Fascination and Mental Bandwidth. Environ. Behav. 2019, 51, 1055–1081. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.; Li, Z.; Wang, H.; Zhou, L.; Bao, Z.; Tang, G. Integration of Migration and Attention Flow Data to Reveal Association of Virtual–Real Dual Intercity Network Structure. Cities 2023, 143, 104614. [Google Scholar] [CrossRef]
- Li, J.; Xue, E.; Wei, Y.; He, Y. How Popularising Higher Education Affects Economic Growth and Poverty Alleviation: Empirical Evidence from 38 Countries. Humanit. Soc. Sci. Commun. 2024, 11, 520. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Liu, K.; Bian, F. How Does Campus-Scape Influence University Students’ Restorative Experiences: Evidences from Simultaneously Collected Physiological and Psychological Data. Urban For. Urban Green. 2025, 107, 128779. [Google Scholar] [CrossRef]
- Subiza-Pérez, M.; Korpela, K.; Pasanen, T. Still Not That Bad for the Grey City: A Field Study on the Restorative Effects of Built Open Urban Places. Cities 2021, 111, 103081. [Google Scholar] [CrossRef]
- Gu, H.; Lin, Y.; Shen, T. Do You Feel Accepted? Perceived Acceptance and Its Spatially Varying Determinants of Migrant Workers among Chinese Cities. Cities 2022, 125, 103626. [Google Scholar] [CrossRef]
- de Vries, M.; Kim, J.Y.; Han, H. The Unequal Landscape of Civic Opportunity in America. Nat. Hum. Behav. 2024, 8, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Xia, C. Towards a Greening City: How Does Regional Cooperation Promote Urban Green Space in the Guangdong-Hong Kong-Macau Greater Bay Area? Urban For. Urban Green. 2023, 86, 128033. [Google Scholar] [CrossRef]
- Megyesi, B.; Gholipour, A.; Cuomo, F.; Canga, E.; Tsatsou, A.; Zihlmann, V.; Junge, R.; Milosevic, D.; Pineda-Martos, R. Perceptions of Stakeholders on Nature-Based Solutions in Urban Planning: A Thematic Analysis in Six European Cities. Urban For. Urban Green. 2024, 96, 128344. [Google Scholar] [CrossRef]
- Coombes, M.A.; Viles, H.A. Integrating Nature-Based Solutions and the Conservation of Urban Built Heritage: Challenges, Opportunities, and Prospects. Urban For. Urban Green. 2021, 63, 127192. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Jiao, H. Exploring the Impact of Urban Built Environment on Public Emotions Based on Social Media Data: A Case Study of Wuhan. Land 2021, 10, 986. [Google Scholar] [CrossRef]
- Yang, Y.; He, R.; Tian, G.; Shi, Z.; Wang, X.; Fekete, A. Equity Study on Urban Park Accessibility Based on Improved 2SFCA Method in Zhengzhou, China. Land 2022, 11, 2045. [Google Scholar] [CrossRef]
- Tian, D.; Wang, J.; Xia, C.; Zhang, J.; Zhou, J.; Tian, Z.; Zhao, J.; Li, B.; Zhou, C. The Relationship between Green Space Accessibility by Multiple Travel Modes and Housing Prices: A Case Study of Beijing. Cities 2024, 145, 104694. [Google Scholar] [CrossRef]
- Qiao, S.; Yeh, A.G.-O. Understanding the Effects of Environmental Perceptions on Walking Behavior by Integrating Big Data with Small Data. Landsc. Urban Plan. 2023, 240, 104879. [Google Scholar] [CrossRef]
- Resler, M.L.; Mazac, R.; Candy, S.; Kemppainen, T. Transitioning beyond Urban Green Space Accessibility Indicators: Case Illustration of a Novel Diversity Planning Tool Applied to Vantaa, Finland. Environ. Sustain. Indic. 2023, 18, 100232. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, J.; Xu, Z.; Hui, T.; Guo, P.; Sun, Y. The Association between Plant Diversity and Perceived Emotions for Visitors in Urban Forests: A Pilot Study across 49 Parks in China. Urban For. Urban Green. 2022, 73, 127613. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, L.; Cui, X.; Yang, H.; Liu, Y.; Gao, X.; Huang, J. A Systematic Review on the Associations between Built Environment and Mental Health among Older People. Front. Public Health 2025, 13, 1584466. [Google Scholar] [CrossRef]
- Sun, D.; Lu, Y.; Qin, Y.; Lu, M.; Song, Z.; Ding, Z. Method for Evaluating Urban Building Renewal Potential Based on Multimachine Learning Integration: A Case Study of Longgang and Longhua Districts in Shenzhen. Land 2024, 14, 15. [Google Scholar] [CrossRef]
- Li, Y.; Zhuang, T.; Qian, Q.K.; Mlecnik, E.; Visscher, H.J. From Acceptance to Continuance: Understanding the Influence of Initial Participation Experience on Residents’ Intentions to Continue Participation in Neighborhood Rehabilitation. Cities 2024, 147, 104788. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Jia, T.; Zhou, L.; Hijazi, I.H. The Six Dimensions of Built Environment on Urban Vitality: Fusion Evidence from Multi-Source Data. Cities 2022, 121, 103482. [Google Scholar] [CrossRef]
- McCarty, D.; Lee, D.; Park, Y.; Kim, H.W. Exploring Road Safety through Urban Fabric Characteristics and Theory-Driven Prediction Modeling with SEM-XGBoost. Environ. Plan. B Urban Anal. City Sci. 2025, 52, 303–321. [Google Scholar] [CrossRef]
- Zhou, S.; Jia, W.; Wang, M.; Liu, Z.; Wang, Y.; Wu, Z. Synergistic Assessment of Multi-Scenario Urban Waterlogging through Data-Driven Decoupling Analysis in High-Density Urban Areas: A Case Study in Shenzhen, China. J. Environ. Manage. 2024, 369, 122330. [Google Scholar] [CrossRef]
- Cao, C.; Su, Y. Transportation Infrastructure and Regional Resource Allocation. Cities 2024, 155, 105433. [Google Scholar] [CrossRef]
- Hao, T.; Chang, H.; Liang, S.; Jones, P.; Chan, P.W.; Li, L.; Huang, J. Heat and Park Attendance: Evidence from “Small Data” and “Big Data” in Hong Kong. Build. Environ. 2023, 234, 110123. [Google Scholar] [CrossRef]
- Chen, J.; Li, P.; Lei, Y.; Li, H.; Zhang, D.; Chen, B.; Liu, J.; Schnabel, M.A. Unraveling the Nexus between Spatial Quality and Buzz Behavior: Analyzing Geo-Tagged Social Media and Multisource Spatial Data Using Text Mining and XGBoost. Appl. Geogr. 2026, 186, 103858. [Google Scholar] [CrossRef]
- Gu, H.; Wang, J.; Ling, Y. Economic Geography of Talent Migration and Agglomeration in China: A Dual-Driver Framework. China Econ. Rev. 2024, 86, 102180. [Google Scholar] [CrossRef]
- Liu, D.; Kwan, M.-P.; Yang, Z.; Kan, Z. Comparing Subjective and Objective Greenspace Accessibility: Implications for Real Greenspace Usage among Adults. Urban For. Urban Green. 2024, 96, 128335. [Google Scholar] [CrossRef]
- Jang, K.M.; Kim, J.; Lee, H.-Y.; Cho, H.; Kim, Y. Urban Green Accessibility Index: A Measure of Pedestrian-Centered Accessibility to Every Green Point in an Urban Area. ISPRS Int. J. Geo-Information 2020, 9, 586. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Z.; Wei, D.; Zhao, P.; Yang, L.; Lu, Y. Revealing the Spatiotemporal Pattern of Urban Vibrancy at the Urban Agglomeration Scale: Evidence from the Pearl River Delta, China. Appl. Geogr. 2025, 181, 103694. [Google Scholar] [CrossRef]
- Gu, H.; Lin, Y.; Hu, H.; Yu, H. COVID-19 Pandemic and Road Infrastructure Exerted Stage-Dependent Spatiotemporal Influences on Inter-City Road Travel in China. Humanit. Soc. Sci. Commun. 2025, 12, 705. [Google Scholar] [CrossRef]






| Variables | Detail Interpretation |
|---|---|
| Marital status | 1, Married; 2, Unmarried couple; 3, Divorced; 4, Widowed; 5, Never married/Separated |
| Education | 1–5 from low to high |
| Personal Doctor | Does the doctor have a regular doctor? 1—No doctor, 2—One doctor, 3—More than one doctor |
| Green Accessibility | 2FSCA green space accessible |
| Green Diversity | Shannon Diversity |
| General Health Condition | 1, Excellent; 2, Very good; 3, Good; 4, Fair; 5, Poor |
| Mental Health Condition | Number of days with mental health issues: 1, 0 days; 2, 1–5 days; 3, 6–13 days; 4, 14–20 days; 5, 21–30 days. |
| Physical Health Condition | Number of days with health issues: 1. 0 days; 2. 1–5 days; 3. 6–13 days; 4. 14–20 days; 5. 21–30 days |
| Variable | Count | Mean | Std | Min | 25% | 50% | 75% | Max | Missing | Missing Rate |
|---|---|---|---|---|---|---|---|---|---|---|
| Marital status | 292,083 | 1.992 | 1.240 | 1 | 1 | 1 | 3 | 5 | 2725 | 0.92% |
| Education | 293,356 | 4.094 | 0.984 | 1 | 3 | 4 | 5 | 5 | 1452 | 0.49% |
| General Health Condition | 293,819 | 2.662 | 1.046 | 1 | 2 | 3 | 3 | 5 | 989 | 0.34% |
| Physical Health Condition | 285,336 | 1.794 | 1.323 | 1 | 1 | 1 | 2 | 5 | 9472 | 3.21% |
| Mental Health Condition | 288,169 | 1.495 | 1.040 | 1 | 1 | 1 | 2 | 5 | 6639 | 2.25% |
| Personal Doctor | 292,726 | 1.850 | 0.634 | 1 | 1 | 2 | 2 | 3 | 2082 | 0.71% |
| Type | Data Categories | Source | Time |
|---|---|---|---|
| BRFSS data | Disease report data | Centers for Disease Control and Prevention | 2020–2023 |
| POI Data | Community and Green Space Data | The data is sourced from https://foursquare.com/ |
| Variables | General Health Condition | Mental Health Condition | Physical Health Condition |
|---|---|---|---|
| Green Accessibility | −0.275 *** (0.072) | 0.007 (0.127) | −0.006 (0.088) |
| Green Diversity | −0.015 (0.035) | 0.013 (0.069) | −0.103 ** (0.044) |
| Marital status | 0.185 *** (0.035) | 0.157 ** (0.053) | 0.205 *** (0.043) |
| Education | −0.545 *** (0.045) | −0.037 (0.069) | −0.141 *** (0.051) |
| Personal Doctor | −0.063 ** (0.031) | 0.043 (0.036) | 0.045 (0.038) |
| R2 | 0.464 | 0.054 | 0.131 |
| N | 408 | 412 | 388 |
| Variables | General Health Condition | Mental Health Condition | Physical Health Condition |
|---|---|---|---|
| R2 | 0.421 | 0.042 | 0.293 |
| MSE | 0.572 | 0.961 | 0.813 |
| MAE | 0.595 | 0.756 | 0.703 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yang, J.; Li, P.; Li, J.; Chen, J. Is More Green Space Always Better for Healthy Aging? Exploring Spatial Threshold and Mediation Effects in the United States. Land 2026, 15, 207. https://doi.org/10.3390/land15020207
Yang J, Li P, Li J, Chen J. Is More Green Space Always Better for Healthy Aging? Exploring Spatial Threshold and Mediation Effects in the United States. Land. 2026; 15(2):207. https://doi.org/10.3390/land15020207
Chicago/Turabian StyleYang, Jing, Pengcheng Li, Jiayi Li, and Jinliu Chen. 2026. "Is More Green Space Always Better for Healthy Aging? Exploring Spatial Threshold and Mediation Effects in the United States" Land 15, no. 2: 207. https://doi.org/10.3390/land15020207
APA StyleYang, J., Li, P., Li, J., & Chen, J. (2026). Is More Green Space Always Better for Healthy Aging? Exploring Spatial Threshold and Mediation Effects in the United States. Land, 15(2), 207. https://doi.org/10.3390/land15020207

