Ecological Insights from Above: Linking Habitat-Level NDVI Patterns with NDMI, LST and, Elevation in a Small Mediterranean City (Italy)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Main Forest Habitat Types
2.2. Stratified Sampling Design and Elevation Data
2.3. Satellite Imagery Collection and Processing
2.4. Statistical Modeling
3. Results
3.1. Model Performance, Residual Spatial Diagnostics and Predictor Effects
3.2. Difference in NDVI Across Forest Habitats
4. Discussion
4.1. Drivers of NDVI Variability
4.2. Habitat-Level Differences
4.3. Model Performance and Robustness
4.4. Implications and Perspectives
4.5. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Vliet, J. Direct and Indirect Loss of Natural Area from Urban Expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Marzialetti, F.; Gamba, P.; Sorriso, A.; Carranza, M.L. Monitoring Urban Expansion by Coupling Multi-Temporal Active Remote Sensing and Landscape Analysis: Changes in the Metropolitan Area of Cordoba (Argentina) from 2010 to 2021. Remote Sens. 2023, 15, 336. [Google Scholar] [CrossRef]
- Joint Research Center WAD|World Atlas of Desertification. Available online: https://wad.jrc.ec.europa.eu/urbanplanet (accessed on 11 December 2025).
- Kronenberg, J.; Andersson, E.; Elmqvist, T.; Łaszkiewicz, E.; Xue, J.; Khmara, Y. Cities, Planetary Boundaries, and Degrowth. Lancet Planet. Health 2024, 8, e234–e241. [Google Scholar] [CrossRef]
- Spotswood, E.N.; Beller, E.E.; Grossinger, R.; Grenier, J.L.; Heller, N.E.; Aronson, M.F.J. The Biological Deserts Fallacy: Cities in Their Landscapes Contribute More than We Think to Regional Biodiversity. BioScience 2021, 71, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Knapp, S.; Aronson, M.F.J.; Carpenter, E.; Herrera-Montes, A.; Jung, K.; Kotze, D.J.; La Sorte, F.A.; Lepczyk, C.A.; MacGregor-Fors, I.; MacIvor, J.S.; et al. A Research Agenda for Urban Biodiversity in the Global Extinction Crisis. BioScience 2021, 71, 268–279. [Google Scholar] [CrossRef]
- Carrus, G.; Scopelliti, M.; Lafortezza, R.; Colangelo, G.; Ferrini, F.; Salbitano, F.; Agrimi, M.; Portoghesi, L.; Semenzato, P.; Sanesi, G. Go Greener, Feel Better? The Positive Effects of Biodiversity on the Well-Being of Individuals Visiting Urban and Peri-Urban Green Areas. Landsc. Urban Plan. 2015, 134, 221–228. [Google Scholar] [CrossRef]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef]
- Rathore, A.; Jasrai, Y.T. Urban Green Patches As Carbon Sink: Gujarat University Campus, Ahmedabad. J. Fundam. Appl. Life Sci. 2013, 3, 208–213. [Google Scholar]
- Guarino, R.; Catalano, C.; Pasta, S. Beyond Urban Forests: The Multiple Functions and the Overlooked Role of Semi-Natural Ecosystems in Mediterranean Cities. Diversity 2024, 16, 447. [Google Scholar] [CrossRef]
- Farkas, J.Z.; Hoyk, E.; de Morais, M.B.; Csomós, G. A Systematic Review of Urban Green Space Research over the Last 30 Years: A Bibliometric Analysis. Heliyon 2023, 9, e13406. [Google Scholar] [CrossRef]
- Rega-Brodsky, C.C.; Aronson, M.F.J.; Piana, M.R.; Carpenter, E.-S.; Hahs, A.K.; Herrera-Montes, A.; Knapp, S.; Kotze, D.J.; Lepczyk, C.A.; Moretti, M.; et al. Urban Biodiversity: State of the Science and Future Directions. Urban Ecosyst. 2022, 25, 1083–1096. [Google Scholar] [CrossRef]
- Chen, M.; Chen, C.; Jin, C.; Li, B.; Zhang, Y.; Zhu, P. Evaluation and Obstacle Analysis of Sustainable Development in Small Towns Based on Multi-Source Big Data: A Case Study of 782 Top Small Towns in China. J. Environ. Manag. 2024, 366, 121847. [Google Scholar] [CrossRef] [PubMed]
- Pettorelli, N.; Laurance, W.F.; O’Brien, T.G.; Wegmann, M.; Nagendra, H.; Turner, W. Satellite Remote Sensing for Applied Ecologists: Opportunities and Challenges. J. Appl. Ecol. 2014, 51, 839–848. [Google Scholar] [CrossRef]
- Finizio, M.; Pontieri, F.; Bottaro, C.; Di Febbraro, M.; Innangi, M.; Sona, G.; Carranza, M.L. Remote Sensing for Urban Biodiversity: A Review and Meta-Analysis. Remote Sens. 2024, 16, 4483. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Chen, X.; Liu, Y. Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021. Remote Sens. 2022, 14, 3967. [Google Scholar] [CrossRef]
- Jin, S.; Sader, S.A. Comparison of Time Series Tasseled Cap Wetness and the Normalized Difference Moisture Index in Detecting Forest Disturbances. Remote Sens. Environ. 2005, 94, 364–372. [Google Scholar] [CrossRef]
- Wang, C.; Ren, Z.; Chang, X.; Wang, G.; Hong, X.; Dong, Y.; Guo, Y.; Zhang, P.; Ma, Z.; Wang, W. Understanding the Cooling Capacity and Its Potential Drivers in Urban Forests at the Single Tree and Cluster Scales. Sustain. Cities Soc. 2023, 93, 104531. [Google Scholar] [CrossRef]
- Schwaab, J.; Meier, R.; Mussetti, G.; Seneviratne, S.; Bürgi, C.; Davin, E.L. The Role of Urban Trees in Reducing Land Surface Temperatures in European Cities. Nat. Commun. 2021, 12, 6763. [Google Scholar] [CrossRef]
- OECD. Redefining “Urban”. A New Way to Measure Metropolitan Areas; OECD: Paris, France, 2012. [Google Scholar]
- Dijkstra, L.; Poelman, H.; Veneri, P. The EU-OECD Definition of a Functional Urban Area; OECD Regional Development Working Papers; OECD: Paris, France, 2019; Volume 2019/11. [Google Scholar]
- OECD Definition of Cities and Functional Urban Areas. Available online: https://www.oecd.org/en/data/datasets/oecd-definition-of-cities-and-functional-urban-areas.html (accessed on 12 December 2025).
- Blasi, C.; Capotorti, G.; Copiz, R.; Guida, D.; Mollo, B.; Smiraglia, D.; Zavattero, L. Classification and Mapping of the Ecoregions of Italy. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2014, 148, 1255–1345. [Google Scholar] [CrossRef]
- Blasi, C.; Capotorti, G.; Copiz, R.; Mollo, B. A First Revision of the Italian Ecoregion Map. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2018, 152, 1201–1204. [Google Scholar] [CrossRef]
- Martinelli, L.; Matzarakis, A. Influence of Height/Width Proportions on the Thermal Comfort of Courtyard Typology for Italian Climate Zones. Sustain. Cities Soc. 2017, 29, 97–106. [Google Scholar] [CrossRef]
- Pesaresi, S.; Biondi, E.; Casavecchia, S. Bioclimates of Italy. J. Maps 2017, 13, 955–960. [Google Scholar] [CrossRef]
- D’Angeli, C.; Ceralli, D.; Varricchione, M.; Carranza, M.; De Francesco, M.C.; Innangi, M.; Santoianni, L.; Stanisci, A. Carta Della Natura at Local Scale as a Tool for Urban Biodiversity Monitoring: The Case Study Of Campobasso. Reticula 2024, 35, 23–36. [Google Scholar]
- Ceralli, D.; Laureti, L. Carta Della Natura Della Regione Molise: Cartografia e Valutazione Degli Habitat Alla Scala 1:25.000; Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA): Rome, Italy, 2021; p. 127.
- Varricchione, M.; Carranza, M.L.; D’Angeli, C.; de Francesco, M.C.; Innangi, M.; Santoianni, A.L.; Stanisci, A. Exploring the Distribution Pattern of Native and Alien Forests and Their Woody Species Diversity in a Small Mediterranean City. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2024, 158, 1335–1346. [Google Scholar] [CrossRef]
- European Environment Agency EUNIS. Habitat Types Search. Available online: https://eunis.eea.europa.eu/habitats.jsp (accessed on 30 June 2025).
- Lados, B.B.; Benke, A.; Borovics, A.; Köbölkuti, Z.A.; Molnár, C.É.; Nagy, L.; Tóth, E.G.; Cseke, K. What We Know about Turkey Oak (Quercus cerris L.)—From Evolutionary History to Species Ecology. Forestry 2024, 97, 497–511. [Google Scholar] [CrossRef]
- Abbate, G.; Blasi, C.; Paura, B.; Scoppola, A.; Spada, F. Phytoclimatic Characterization of Quercus frainetto Ten. Stands in Peninsular Italy. Vegetatio 1990, 90, 35–45. [Google Scholar] [CrossRef]
- Laoué, J.; Gea-Izquierdo, G.; Dupouyet, S.; Conde, M.; Fernandez, C.; Ormeño, E. Leaf Morpho-Anatomical Adjustments in a Quercus pubescens Forest after 10 Years of Partial Rain Exclusion in the Field. Tree Physiol. 2024, 44, tpae047. [Google Scholar] [CrossRef] [PubMed]
- Vodnik, D.; Gričar, J.; Lavrič, M.; Ferlan, M.; Hafner, P.; Eler, K. Anatomical and Physiological Adjustments of Pubescent Oak (Quercus Pubescens Willd.) from Two Adjacent Sub-Mediterranean Ecosites. Environ. Exp. Bot. 2019, 165, 208–218. [Google Scholar] [CrossRef]
- Camarero, J.J.; Colangelo, M.; Rodríguez-González, P.M. Tree Growth, Wood Anatomy and Carbon and Oxygen Isotopes Responses to Drought in Mediterranean Riparian Forests. For. Ecol. Manag. 2023, 529, 120710. [Google Scholar] [CrossRef]
- Landgraf, J.; Tetzlaff, D.; Dubbert, M.; Dubbert, D.; Smith, A.; Soulsby, C. Xylem Water in Riparian Willow Trees (Salix alba) Reveals Shallow Sources of Root Water Uptake by in Situ Monitoring of Stable Water Isotopes. Hydrol. Earth Syst. Sci. 2022, 26, 2073–2092. [Google Scholar] [CrossRef]
- Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. Black Locust (Robinia pseudoacacia) Beloved and Despised: A Story of an Invasive Tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef]
- Vítková, M.; Sádlo, J.; Roleček, J.; Petřík, P.; Sitzia, T.; Müllerová, J.; Pyšek, P. Robinia pseudoacacia-Dominated Vegetation Types of Southern Europe: Species Composition, History, Distribution and Management. Sci. Total Environ. 2020, 707, 134857. [Google Scholar] [CrossRef]
- Candel-Pérez, D.; Lucas-Borja, M.E.; García-Cervigón, A.I.; Tíscar, P.A.; Andivia, E.; Bose, A.K.; Sánchez-Salguero, R.; Camarero, J.J.; Linares, J.C. Forest Structure Drives the Expected Growth of Pinus nigra along Its Latitudinal Gradient under Warming Climate. For. Ecol. Manag. 2022, 505, 119818. [Google Scholar] [CrossRef]
- Vacek, Z.; Cukor, J.; Vacek, S.; Gallo, J.; Bažant, V.; Zeidler, A. Role of Black Pine (Pinus nigra J. F. Arnold) in European Forests Modified by Climate Change. Eur. J. For. Res. 2023, 142, 1239–1258. [Google Scholar] [CrossRef]
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of Tree Species on Understory Vegetation Diversity and Mechanisms Involved—A Critical Review for Temperate and Boreal Forests. For. Ecol. Manag. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Pielech, R. Plant Species Richness in Riparian Forests: Comparison to Other Forest Ecosystems, Longitudinal Patterns, Role of Rare Species and Topographic Factors. For. Ecol. Manag. 2021, 496, 119400. [Google Scholar] [CrossRef]
- Yılmaz, O.Y.; Yılmaz, H.; Akyüz, Y.F. Effects of the Overstory on the Diversity of the Herb and Shrub Layers of Anatolian Black Pine Forests. Eur. J. For. Res. 2018, 137, 433–445. [Google Scholar] [CrossRef]
- Körner, C. The Use of ‘Altitude’ in Ecological Research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Tarquini, S.; Isola, I.; Favalli, M.; Battistini, A.; Dotta, G. TINITALY, a Digital Elevation Model of Italy with a 10 Meters Cell Size; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2023. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- USGS EROS Archive-Landsat Archives-Landsat 8-9 OLI/TIRS Collection 2 Level-2 Science Products|U.S. Geological Survey. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-8-9-olitirs-collection-2-level-2 (accessed on 8 September 2025).
- Wenny, B.N.; Helder, D.; Hong, J.; Leigh, L.; Thome, K.J.; Reuter, D. Pre- and Post-Launch Spatial Quality of the Landsat 8 Thermal Infrared Sensor. Remote Sens. 2015, 7, 1962–1980. [Google Scholar] [CrossRef]
- U.S. Geological Survey How Do I Use a Scale Factor with Landsat Level-2 Science Products? Available online: https://www.usgs.gov/faqs/how-do-i-use-a-scale-factor-landsat-level-2-science-products (accessed on 30 June 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Olsen, L.R.; Zachariae, H.B.; Patil, I.; Lüdecke, D. Cvms, version 2.0.0. Cross-Validation for Model Selection. CRAN: Vienna, Austria, 2025.
- Lenth, R.V. Emmeans, version 2.0.1. Estimated Marginal Means, Aka Least-Squares Means. CRAN: Vienna, Austria, 2025.
- Hothorn, T.; Bretz, F.; Westfall, P.; Heiberger, R.M.; Schuetzenmeister, A.; Scheibe, S. Multcomp, version 1.4-29. Simultaneous Inference in General Parametric Models. CRAN: Vienna, Austria, 2025.
- R Core Team. R: A Language and Environment for Statistical Computing; CRAN: Vienna, Austria, 2020. [Google Scholar]
- Bchir, A.; Masmoudi-Charfi, C. Estimating and Mapping NDVI and NDMI Indexes by Remote Sensing of Olive Orchards in Different Tunisian Regions. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, Proceedings of the Euro-Mediterranean Conference for Environmental Integration (EMCEI-3), Sousse, Tunisia, 20–25 November 2021; Ksibi, M., Negm, A., Hentati, O., Ghorbal, A., Sousa, A., Rodrigo-Comino, J., Panda, S., Lopes Velho, J., El-Kenawy, A.M., Perilli, N., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 515–518. [Google Scholar]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the Capability of Remote Sensing and GIS Techniques for Monitoring Reclamation Success in Coal Mine Degraded Lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef]
- Mayoral, C.; Calama, R.; Sánchez-González, M.; Pardos, M. Modelling the Influence of Light, Water and Temperature on Photosynthesis in Young Trees of Mixed Mediterranean Forests. New For. 2015, 46, 485–506. [Google Scholar] [CrossRef]
- Llusia, J.; Roahtyn, S.; Yakir, D.; Rotenberg, E.; Seco, R.; Guenther, A.; Peñuelas, J. Photosynthesis, Stomatal Conductance and Terpene Emission Response to Water Availability in Dry and Mesic Mediterranean Forests. Trees 2016, 30, 749–759. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef]
- Sebastiani, A.; Salvati, R.; Manes, F. Comparing Leaf Area Index Estimates in a Mediterranean Forest Using Field Measurements, Landsat 8, and Sentinel-2 Data. Ecol. Process. 2023, 12, 28. [Google Scholar] [CrossRef]
- Marusig, D.; Petruzzellis, F.; Tomasella, M.; Napolitano, R.; Altobelli, A.; Nardini, A.; Marusig, D.; Petruzzellis, F.; Tomasella, M.; Napolitano, R.; et al. Correlation of Field-Measured and Remotely Sensed Plant Water Status as a Tool to Monitor the Risk of Drought-Induced Forest Decline. Forests 2020, 11, 77. [Google Scholar] [CrossRef]
- Roy, B.; Bari, E. Examining the Relationship between Land Surface Temperature and Landscape Features Using Spectral Indices with Google Earth Engine. Heliyon 2022, 8, e10668. [Google Scholar] [CrossRef] [PubMed]
- De Frenne, P.; Lenoir, J.; Luoto, M.; Scheffers, B.R.; Zellweger, F.; Aalto, J.; Ashcroft, M.B.; Christiansen, D.M.; Decocq, G.; De Pauw, K.; et al. Forest Microclimates and Climate Change: Importance, Drivers and Future Research Agenda. Glob. Change Biol. 2021, 27, 2279–2297. [Google Scholar] [CrossRef] [PubMed]
- Bo, W.; Xiao, Y.; Sun, J.; Cao, Y.; Chen, L. Comparative Analysis of Two Methods for Valuing Local Cooling Effect of Forests in Inner Mongolia Plateau. Remote Sens. 2024, 16, 4424. [Google Scholar] [CrossRef]
- Khalefa, E.; Pepin, N.; Teeuw, R. Long-Term Vegetation Trends and Driving Factors of NDVI Change on the Slopes of Mount Kilimanjaro. Int. J. Environ. Stud. 2024, 81, 2027–2047. [Google Scholar] [CrossRef]
- Bussotti, F.; Ferrini, F.; Pollastrini, M.; Fini, A. The Challenge of Mediterranean Sclerophyllous Vegetation under Climate Change: From Acclimation to Adaptation. Environ. Exp. Bot. 2014, 103, 80–98. [Google Scholar] [CrossRef]
- Gratani, L.; Catoni, R.; Varone, L. Morphological, Anatomical and Physiological Leaf Traits of Q. Ilex, P. Latifolia, P. Lentiscus, and M. Communis and Their Response to Mediterranean Climate Stress Factors. Bot. Stud. 2013, 54, 35. [Google Scholar] [CrossRef]
- Dimitrova, A.; Csilléry, K.; Klisz, M.; Lévesque, M.; Heinrichs, S.; Cailleret, M.; Andivia, E.; Madsen, P.; Böhenius, H.; Cvjetkovic, B.; et al. Risks, Benefits, and Knowledge Gaps of Non-Native Tree Species in Europe. Front. Ecol. Evol. 2022, 10, 908464. [Google Scholar] [CrossRef]
- Rohde, M.M.; Stella, J.C.; Roberts, D.A.; Singer, M.B. Groundwater Dependence of Riparian Woodlands and the Disrupting Effect of Anthropogenically Altered Streamflow. Proc. Natl. Acad. Sci. USA 2021, 118, e2026453118. [Google Scholar] [CrossRef]
- Chiaffarelli, G.; Vagge, I. Cities vs Countryside: An Example of a Science-Based Peri-Urban Landscape Features Rehabilitation in Milan (Italy). Urban For. Urban Green. 2023, 86, 128002. [Google Scholar] [CrossRef]
- Giupponi, L.; Borgonovo, G.; Leoni, V.; Zuccolo, M.; Bischetti, G.B. Vegetation and Water of Lowland Spring-Wells in Po Plain (Northern Italy): Ecological Features and Management Proposals. Wetl. Ecol. Manag. 2022, 30, 357–374. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Invasive Characteristics of Robinia pseudoacacia and Its Impacts on Species Diversity. Diversity 2024, 16, 773. [Google Scholar] [CrossRef]
- Portela, A.P.; Gonçalves, J.F.; Durance, I.; Vieira, C.; Honrado, J. Riparian Forest Response to Extreme Drought Is Influenced by Climatic Context and Canopy Structure. Sci. Total Environ. 2023, 881, 163128. [Google Scholar] [CrossRef]
- Šimková, M.; Vacek, S.; Šimůnek, V.; Vacek, Z.; Cukor, J.; Hájek, V.; Bílek, L.; Prokůpková, A.; Štefančík, I.; Sitková, Z.; et al. Turkey Oak (Quercus cerris L.) Resilience to Climate Change: Insights from Coppice Forests in Southern and Central Europe. Forests 2023, 14, 2403. [Google Scholar] [CrossRef]
- Quaranta, L.; Di Marzio, P.; Fortini, P. Quercus cerris Leaf Functional Traits to Assess Urban Forest Health Status for Expeditious Analysis in a Mediterranean European Context. Plants 2025, 14, 285. [Google Scholar] [CrossRef] [PubMed]
- Fantozzi, D.; Sferra, G.; Trupiano, D.; Scippa, G.S. Design and Application of Species-Specific Primers to Quercus cerris Roots’ Identification in Urban Forests. Sci. Rep. 2025, 15, 32298. [Google Scholar] [CrossRef]
- Recanatesi, F.; Giuliani, C.; Ripa, M.N.; Recanatesi, F.; Giuliani, C.; Ripa, M.N. Monitoring Mediterranean Oak Decline in a Peri-Urban Protected Area Using the NDVI and Sentinel-2 Images: The Case Study of Castelporziano State Natural Reserve. Sustainability 2018, 10, 3308. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. The European Forest Condition Monitor: Using Remotely Sensed Forest Greenness to Identify Hot Spots of Forest Decline. Front. Plant Sci. 2021, 12, 689220. [Google Scholar] [CrossRef]
- Wang, Y.; Rammig, A.; Blickensdörfer, L.; Wang, Y.; Zhu, X.X.; Buras, A. Species-Specific Responses of Canopy Greenness to the Extreme Droughts of 2018 and 2022 for Four Abundant Tree Species in Germany. Sci. Total Environ. 2025, 958, 177938. [Google Scholar] [CrossRef]
- Gentilesca, T.; Camarero, J.J.; Colangelo, M.; Nolè, A.; Ripullone, F. Drought-Induced Oak Decline in the Western Mediterranean Region: An Overview on Current Evidences, Mechanisms and Management Options to Improve Forest Resilience. iForest Biogeosci. For. 2017, 10, 796. [Google Scholar] [CrossRef]
- Fonseca, A.; Zina, V.; Duarte, G.; Aguiar, F.C.; Rodríguez-González, P.M.; Ferreira, M.T.; Fernandes, M.R. Riparian Ecological Infrastructures: Potential for Biodiversity-Related Ecosystem Services in Mediterranean Human-Dominated Landscapes. Sustainability 2021, 13, 10508. [Google Scholar] [CrossRef]
- Royo-Navascues, M.; Martínez del Castillo, E.; Tejedor, E.; Serrano-Notivoli, R.; Longares, L.A.; Saz, M.A.; Novak, K.; de Luis, M. The Imprint of Droughts on Mediterranean Pine Forests. Forests 2022, 13, 1396. [Google Scholar] [CrossRef]
- Moya-Pérez, J.M.; Carreño, M.F.; Esteve-Selma, M.Á. Enhancing the Resilience of a Mediterranean Forest to Extreme Drought Events and Climate Change: Pinus—Tetraclinis Forests in Europe. Forests 2021, 12, 487. [Google Scholar] [CrossRef]
- Mantero, G.; Morresi, D.; Marzano, R.; Motta, R.; Mladenoff, D.J.; Garbarino, M. The Influence of Land Abandonment on Forest Disturbance Regimes: A Global Review. Landsc. Ecol. 2020, 35, 2723–2744. [Google Scholar] [CrossRef]
- Solomou, A.D.; Proutsos, N.D.; Karetsos, G.; Tsagari, K. Effects of Climate Change on Vegetation in Mediterranean Forests: A Review. Int. J. Environ. Agric. Biotechnol. 2017, 2, 240–247. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Gao, S.; Zhong, R.; Yan, K.; Ma, X.; Chen, X.; Pu, J.; Gao, S.; Qi, J.; Yin, G.; Myneni, R.B. Evaluating the Saturation Effect of Vegetation Indices in Forests Using 3D Radiative Transfer Simulations and Satellite Observations. Remote Sens. Environ. 2023, 295, 113665. [Google Scholar] [CrossRef]
- Antenucci, E.; Di Pirro, E.; di Cristofaro, M.; Garfì, V.; Marchetti, M.; Lasserre, B. Beneficial or Impactful Management? Life Cycle Assessment and i-Tree Canopy to Evaluate the Net Environmental Benefits of Mediterranean Urban Forests. Urban For. Urban Green. 2025, 107, 128800. [Google Scholar] [CrossRef]



| Code | Forest Habitat Type | Dominant Species |
|---|---|---|
| Pni | Coniferous forest | Pinus nigra |
| Qce | Southern Italic Quercus cerris forests | Quercus cerris |
| Qfr | Southern Italic Quercus frainetto forest | Quercus frainetto |
| Qpu | Italo-Sicilian Quercus pubescens forest | Quercus pubescens |
| Rps | Deciduous self-sown forest of non-native trees | Robinia pseudoacacia |
| Sal | Mediterranean riparian Populus forest | Salix alba |
| Science Product Collection 2 | Scale Factor | Additive Offset | Data Type | Valid Range |
|---|---|---|---|---|
| Surface Reflectance | 0.0000275 | −0.2 | Uint 16 | 7273–43,636 |
| Surface Temperature | 0.00341802 | 149 | Uint 16 | 293–65,535 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bottaro, C.; Finizio, M.; Innangi, M.; Varricchione, M.; Carranza, M.L.; Sona, G. Ecological Insights from Above: Linking Habitat-Level NDVI Patterns with NDMI, LST and, Elevation in a Small Mediterranean City (Italy). Land 2026, 15, 57. https://doi.org/10.3390/land15010057
Bottaro C, Finizio M, Innangi M, Varricchione M, Carranza ML, Sona G. Ecological Insights from Above: Linking Habitat-Level NDVI Patterns with NDMI, LST and, Elevation in a Small Mediterranean City (Italy). Land. 2026; 15(1):57. https://doi.org/10.3390/land15010057
Chicago/Turabian StyleBottaro, Chiara, Michele Finizio, Michele Innangi, Marco Varricchione, Maria Laura Carranza, and Giovanna Sona. 2026. "Ecological Insights from Above: Linking Habitat-Level NDVI Patterns with NDMI, LST and, Elevation in a Small Mediterranean City (Italy)" Land 15, no. 1: 57. https://doi.org/10.3390/land15010057
APA StyleBottaro, C., Finizio, M., Innangi, M., Varricchione, M., Carranza, M. L., & Sona, G. (2026). Ecological Insights from Above: Linking Habitat-Level NDVI Patterns with NDMI, LST and, Elevation in a Small Mediterranean City (Italy). Land, 15(1), 57. https://doi.org/10.3390/land15010057

