Application of the Normalized Difference Drought Index (NDDI) for Monitoring Agricultural Drought in Tropical Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Land Use Map of Batang Anai Subdistrict
2.2.2. Monthly Rainfall Data (2014–2023)
2.2.3. Data Image MODIS MOD09A1 V6
2.3. Data Processing
2.3.1. Workflow
2.3.2. MODIS Data Imagery
3. Results
3.1. Analysis of NDVI
3.2. Analysis of NDWI
3.3. Analysis of NDDI
3.4. Drought Distribution in Agricultural Areas in Batang Anai Subdistrict
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BNPB | National Disaster Management Agency |
| BMKG | Meteorological, Climatological and Geophysical Agency of West Sumatera |
| BIG | Geospatial Information Agency |
| IOD | Indian Ocean Dipole Mode |
| IRBI | Indonesian Disaster Risk Index |
| NDVI | Normalized Difference Vegetation Index |
| NDWI | Normalized Difference Wet Index |
| NDDI | Normalized Difference Drought Index |
| NIR | Near-Infrared |
| R | Red |
| SWIR | Shortwave Infrared |
| TVI | Thermal Vegetation Index |
References
- Hendrawan, V.S.A.; Kim, W.; Touge, Y.; Shi, K.; Komori, D. A Global-Scale Relationship Between Crop Yield Anomaly and Multiscalar Drought Index Based on Multiple Precipitation Data. Environ. Res. Lett. 2022, 17, 014037. [Google Scholar] [CrossRef]
- Xu, H.; Lian, X.; Slette, I.J.; Yang, H.; Zhang, Y.; Chen, A.; Piao, S. Rising Ecosystem Water Demand Exacerbates the Lengthening of Tropical Dry Seasons. Nat. Commun. 2022, 13, 4093. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishna, K.N.; Hugar, R.; Rajashekar, M.K.; Jayant, S.B.; Talekar, S.C.; Virupaxi, P.C. Simulated Drought Stress Unravels Differential Response and Different Mechanisms of Drought Tolerance in Newly Developed Tropical Field Corn Inbreds. PLoS ONE 2023, 18, e0283528. [Google Scholar] [CrossRef] [PubMed]
- Orek, C. A Review of Drought-Stress Responsive Genes and Their Applications for Drought Stress Tolerance in Cassava (Manihot Esculenta Crantz). Discov. Biotechnol. 2024, 1, 5. [Google Scholar] [CrossRef]
- Frazier, A.G.; Giardina, C.P.; Giambelluca, T.W.; Brewington, L.; Chen, Y.L.; Chu, P.S.; Fortini, L.B.; Hall, D.; Helweg, D.A.; Keener, V.W.; et al. A Century of Drought in Hawaiʻi: Geospatial Analysis and Synthesis Across Hydrological, Ecological, and Socioeconomic Scales. Sustainability 2022, 14, 12023. [Google Scholar] [CrossRef]
- Ruedas, D.P.R.A.; Moggiano, N. ENSO Influence on Agricultural Drought Identified by SPEI Assessment in the Peruvian Tropical Andes, Mantaro Valley. Manglar 2023, 20, 157–167. [Google Scholar] [CrossRef]
- Meena, M.R.; Alarmelu, S.; Vasantha, S.; Sheelamary, S.; Anusheela, V.; Kumar, R.; Chhabra, M.L.; Mutharasu, S.; Karthick, M. Drought Resilience Evaluation of Sugarcane (Saccharum Spp.) Hybrids in Indian Tropical and Sub-Tropical Climates. Indian J. Genet. Plant Breed. 2024, 84, 266–272. [Google Scholar] [CrossRef]
- Cavalcante, E.S.; Lacerda, C.F.d.; Mesquita, R.O.; Melo, A.S.d.; Ferreira, J.; Teixeira, A.d.S.; Lima, S.C.R.V.; Sales, J.R.d.S.; Silva, J.d.S.; Gheyi, H.R. Supplemental Irrigation With Brackish Water Improves Carbon Assimilation and Water Use Efficiency in Maize Under Tropical Dryland Conditions. Agriculture 2022, 12, 544. [Google Scholar] [CrossRef]
- Irawan, A.; Komori, D.; Hendrawan, V.S.A. Correlation Analysis of Agricultural Drought Risk on Wet Farming Crop and Meteorological Drought Index in the Tropical-Humid Region. Theor. Appl. Climatol. 2023, 153, 227–240. [Google Scholar] [CrossRef]
- Affandy, N.A.; Iranata, D.; Anwar, N.; Maulana, M.A.; Wardoyo, W.; Prastyo, D.D.; Sukojo, B.M. The Relationship Between Hydro-Agricultural Drought in the Corong River Basin: A Causal Time Series Regression Model. Civ. Eng. Dimens. 2024, 26, 173–190. [Google Scholar] [CrossRef]
- Tete, J.N.; Makokha, G.O.; Ngesa, O.; Muthami, J.N.; Odhiambo, B.W. Spatio-Temporal Agricultural Drought Quantification in a Rainfed Agriculture, Athi-Galana-Sabaki River Basin. J. Geogr. Inf. Syst. 2024, 16, 201–226. [Google Scholar] [CrossRef]
- Handayani, A.; Setiadi, H. Distribution of Drought on Agricultural Land in Palabuhanratu District Sukabumi Regency. J. Geogr. Media Inf. Pengemb. Dan Profesi Kegeografian 2023, 20, 31–36. [Google Scholar] [CrossRef]
- Viet, L.V.; Thủy, T.T.T. Drought Sensitivity Analysis of Meteorological and Vegetation Indices in Dak Nong, Vietnam. J. Water Clim. Change 2024, 15, 4968–4988. [Google Scholar] [CrossRef]
- Muhammad, F.; Yang, J.; Wu, T.; Wang, S.; Zhao, X.; Tariq, A. Impact Assessment of Agricultural Droughts on Water Use Efficiency in Different Climatic Regions of Punjab Province Pakistan Using MODIS Time Series Imagery. Hydrol. Process. 2024, 38, e15232. [Google Scholar] [CrossRef]
- Dahhane, Y.; Ongoma, V.; Hadri, A.; Kharrou, M.H.; Hakam, O.; Chehbouni, A. Probabilistic Linkages of Propagation from Meteorological to Agricultural Drought in the North African Semi-Arid Region. Front. Water 2025, 7, 1559046. [Google Scholar] [CrossRef]
- Faizah, E.N.; Wijaya, A.P.; Sabri, L.M. Analisis Daerah Rawan Kekeringan Lahan Sawah di Kabupaten Purworejo Menggunakan Sistem Informasi Geografis. Elipsoida J. Geod. Dan Geomatika 2023, 6, 23–31. [Google Scholar] [CrossRef]
- Martínez-Vicente, V.; Clark, J.R.; Corradi, P.; Aliani, S.; Arias, M.; Bochow, M.; Bonnery, G.; Cole, M.; Cózar, A.; Donnelly, R.; et al. Measuring Marine Plastic Debris from Space: Initial Assessment of Observation Requirements. Remote Sens. 2019, 11, 2443. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; García-Ortiz, J. A Long Short-Term Memory-Based Prototype Model for Drought Prediction. Electronics 2023, 12, 3956. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Bai, Y.; Zhang, S.; Yang, S.; Henchiri, M.; Seka, A.M.; Nanzad, L. Drought Monitoring and Performance Evaluation Based on Machine Learning Fusion of Multi-Source Remote Sensing Drought Factors. Remote Sens. 2022, 14, 6398. [Google Scholar] [CrossRef]
- Ha, D.H.; Duc, P.; Luong, T.H.; Duc, T.T.; Ngoc, T.T.; Minh, T.N.; Nguyễn, M.T. Application of Artificial Intelligence to Forecast Drought Index for the Mekong Delta. Appl. Sci. 2024, 14, 6763. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Chen, X.; Liu, Y.; Wang, S.; Wang, L. Ensemble Learning Based on Remote Sensing Data for Monitoring Agricultural Drought in Major Winter Wheat-Producing Areas of China. Prog. Phys. Geogr. Earth Environ. 2023, 48, 171–190. [Google Scholar] [CrossRef]
- Dzakiyah, I.F.; Saraswati, R.; Pamungkas, F.D. The Potential of Agricultural Land Drought Using Normalized Difference Drought Index in Ciampel Subdistrict Karawang Regency. Int. J. Adv. Sci. Eng. Inf. Technol. 2022, 12, 908. [Google Scholar] [CrossRef]
- Salas-Martínez, F.; Valdés-Rodríguez, O.A.; Palacios-Wassenaar, O.M.; Márquez-Grajales, A.; Hernández, L.D.R. Methodological Estimation to Quantify Drought Intensity Based on the NDDI Index With Landsat 8 Multispectral Images in the Central Zone of the Gulf of Mexico. Front. Earth Sci. 2023, 11, 1027483. [Google Scholar] [CrossRef]
- Rahman, F.A.; Suryawati, S.; Supriyadi, S.; Basuki, B. Google Earth Engine for Spatio-Temporal Drought Monitoring in Bangkalan, Indonesia. Bio Web Conf. 2024, 99, 05006. [Google Scholar] [CrossRef]
- Mujiyo, M.; Nurdianti, R.; Komariah, K.; Sutarno, S. Agricultural Land Dryness Distribution Using the Normalized Difference Drought Index (NDDI) Algorithm on Landsat 8 Imagery in Eromoko, Indonesia. Environ. Nat. Resour. J. 2023, 21, 127–139. [Google Scholar] [CrossRef]
- Pariaman, B.P.S.K.P. (Ed.) Kecamatan Batang Anai Dalam Angka 2024; BPS Kabupaten Padang Pariaman: Kabupaten Padang Pariaman, Indonesia, 2024; pp. 119–122. [Google Scholar]
- Syaiful; Darma, A.S.; Legianto; Budianto; Syahril; Agus, N.I.; Amiran, B. Buletin Iklim Sumatera Barat 05; Stasiun Klimatologi Padang Pariaman: Kabupaten Padang Pariaman, Indonesia, 2022; p. 46. [Google Scholar]
- Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Vermote, E.F.; Roger, J.C.; Ray, J.P. Modis Surface Reflactance User’s Guide Collection 6; Nasa Eosdis Land Processes Daac: Sioux Falls, SD, USA, 2015; p. 35. [Google Scholar]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Liu, C.-L.; Wu, J.-J. Crop Drought Monitoring using MODIS NDDI over Mid-Territory of China. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. III-883–III-886. [Google Scholar]
- Dwi Kurnia, K. Analisis Potensi Kekeringan Lahan Sawah Dengan Menggunakan Metode Normalized Differency Drought Index (NDDI) dan Thermal Vegetation Index (TVI). Studi Kasus: Kabupaten Bantul, in Teknik Geodesi. Bachelor’s Thesis, Institut Teknologi Nasional Malang, Malang, Indonesia, 2019. [Google Scholar]
- Eberhardt, I.D.R.; Schultz, B.; Rizzi, R.; Sanches, I.D.A.; Formaggio, A.R.; Atzberger, C.; Mello, M.P.; Immitzer, M.; Trabaquini, K.; Foschiera, W.; et al. Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas. Remote Sens. 2016, 8, 219. [Google Scholar] [CrossRef]
- Marquis, J.W.; Bogdanoff, A.S.; Campbell, J.R.; Cummings, J.; Westphal, D.L.; Smith, N.J.; Zhang, J. Estimating Infrared Radiometric Satellite Sea Surface Temperature Retrieval Cold Biases in the Tropics Due to Unscreened Optically Thin Cirrus Clouds. J. Atmos. Ocean. Technol. 2017, 34, 355–373. [Google Scholar] [CrossRef]
- Fikriyah, V.N. Mapping Land Cover Based on Time Series Synthetic Aperture Radar (SAR) Data in Klaten, Indonesia. J. Geogr. Lingkung. Trop. 2020, 3, 12–21. [Google Scholar] [CrossRef]
- Philipp, M.; Wegmann, M.; Kübert-Flock, C. Quantifying the Response of German Forests to Drought Events via Satellite Imagery. Remote Sens. 2021, 13, 1845. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, T.; Zhang, Y.; Lü, D.; Wang, C.; Lü, Y.; Wu, X. Spatiotemporal Patterns and Driving Factors of Ecological Vulnerability on the Qinghai-Tibet Plateau Based on the Google Earth Engine. Remote Sens. 2022, 14, 5279. [Google Scholar] [CrossRef]
- Sukojo, B.M.; Prayoga, M.P. Pemanfaatan Teknologi Penginderaan Jauh dan Sistem Informasi Geografis Untuk Analisis Spasial Tingkat Kekeringan Wilayah Kabupaten Tuban. Geoid J. Geod. Surv. GPS GIS Penginderaan Jauh Hidrogr. Pertanah. 2018, 13, 132. [Google Scholar] [CrossRef][Green Version]
- Lasaiba, M.; Saud, A. Pemanfaatan Citra Landsat 8 Oli/Tirs Untuk Identifikasi Kerapatan Vegetasi Menggunakan Metode Normalized Difference Vegetation Index (NDVI) Di Kota Ambon. J. Geogr. 2022, 20, 53–65. [Google Scholar][Green Version]
- Singgalen, Y.A. Penerapan Metode Spatio-Temporal Analysis dalam Analisis Dinamika Tutupan dan Penggunaan Lahan Berbasis NDVI dan NDWI. Kaji. Ilmian Inform. Dan Komput. 2023, 4, 10. [Google Scholar] [CrossRef]
- Patil, P.P.; Jagtap, M.P.; Khatri, N.; Madan, H.; Vadduri, A.A.; Patodia, T. Exploration and advancement of NDDI leveraging NDVI and NDWI in Indian semi-arid regions: A remote sensing-based study. Case Stud. Chem. Environ. Eng. 2024, 9, 100573. [Google Scholar] [CrossRef]
- Du, T.L.T.; Bui, D.D.; Nguyen, M.; Lee, H. Satellite-Based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam. Water 2018, 10, 659. [Google Scholar] [CrossRef]
- Senapati, U.; Das, T.K. Enhancing agricultural drought monitoring with the Integrated Agricultural Drought Index (IADI): A multi-source remote sensing approach. Adv. Space Res. 2025, 75, 8599–8626. [Google Scholar] [CrossRef]
- Pariaman, P.P. Mengenal Padang Pariaman. 2025. Available online: https://padangpariamankab.go.id/blog/profil_tampil/wilayah (accessed on 10 October 2024).
- Zou, X.; Mõttus, M. Sensitivity of Common Vegetation Indices to the Canopy Structure of Field Crops. Remote Sens. 2017, 9, 994. [Google Scholar] [CrossRef]
- Tian, J.; Tian, Y.; Cao, Y.; Wan, W.; Liu, K. Research on Rice Fields Extraction by NDVI Difference Method Based on Sentinel Data. Sensors 2023, 23, 5876. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S.; Chen, Y.; Ma, H.; Li, W.; He, T.; Tian, F.; Zhang, F. A comprehensive review of rice mapping from satellite data: Algorithms, product characteristics and consistency assessment. Sci. Remote Sens. 2024, 10, 100172. [Google Scholar] [CrossRef]
- Xiao, T.; Li, P.; Fei, W.; Wang, J. Effects of vegetation roots on the structure and hydraulic properties of soils: A perspective review. Sci. Total Environ. 2024, 906, 167524. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Zhou, M.; Zhu, B.; Wang, H. Converting Cropland to Forest Improves Soil Water Retention Capacity by Changing Soil Aggregate Stability and Pore-Size Distribution. Sustainability 2025, 17, 4363. [Google Scholar] [CrossRef]
- Utomo, A.S.; Hadi, M.P.; Nurjani, E. Analisis spasial temporal zona rawan kekeringan lahan pertanian berbasis remote sensing. J. Teknosains 2022, 11, 112. [Google Scholar] [CrossRef]
- Armei Saputra, M.P.R. Dampak El Niño dan IOD Positif Terhadap Lama Musim Kemarau dan Pertanian di Sumatera Barat; ANTARA SUMBAR: Sumatera Barat, Indonesia, 2023. [Google Scholar]
- Lee, S.-J.; Kim, N.; Lee, Y. Development of Integrated Crop Drought Index by Combining Rainfall, Land Surface Temperature, Evapotranspiration, Soil Moisture, and Vegetation Index for Agricultural Drought Monitoring. Remote Sens. 2021, 13, 1778. [Google Scholar] [CrossRef]
- Yagci, A.L.; Yilmaz, M.T. Mapping and Monitoring of Soil Moisture, Evapotranspiration, and Agricultural Drought. In Agro-geoinformatics: Theory and Practice; Di, L., Üstündağ, B., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 299–320. [Google Scholar] [CrossRef]
- Winkler, K.; Gessner, U.; Hochschild, V. Identifying Droughts Affecting Agriculture in Africa Based on Remote Sensing Time Series between 2000–2016: Rainfall Anomalies and Vegetation Condition in the Context of ENSO. Remote Sens. 2017, 9, 831. [Google Scholar] [CrossRef]
- Maulana, I.F.; Sudaryatno, S.; Jatmiko, R.H. Identifikasi Sebaran Kerentanan Kekeringan Menggunakan Analytical Hierarchy Process (AHP) di Kabupaten Temanggung. J. Teknosains 2021, 10, 125. [Google Scholar] [CrossRef]
- Memenun; Wati, T. Analisis Karakteristik Kakeringan Lahan Padi Sawah Di Wilayah Utara Provinsi Jawa Barat. J. Tanah Dan Iklim 2019, 43, 15. [Google Scholar]
- Harefa, D. The Influence of Soil Texture Types on Land Resilience to Drought in South Nias. J. Sapta Agrica 2025, 4, 13–30. [Google Scholar] [CrossRef]
- Zamaria, S.; Arhonditsis, G.B. A Framework for Evaluating Irrigation Impact on Water Balance and Crop Yield Under Different Soil Moisture Conditions. Hydrol. Process. 2025, 39, e70232. [Google Scholar] [CrossRef]
- Saleem, F.; Arshad, A.; Mirchi, A.; Khaliq, T.; Zeng, X.; Rahman, M.M.; Dilawar, A.; Pham, Q.B.; Mahmood, K. Observed Changes in Crop Yield Associated With Droughts Propagation via Natural and Human-Disturbed Agro-Ecological Zones of Pakistan. Remote Sens. 2022, 14, 2152. [Google Scholar] [CrossRef]
- Ahmed, A.; Wang, J.J.; Kongchum, M.; Harrell, D.L.; Adotey, N.; Haider, M.A.; Gaston, L.A.; Jeong, C. Soil Enzyme Activities and Health Indicator Characteristics in Furrow-irrigated and Flooded Rice Production Systems. Agrosystems Geosci. Environ. 2025, 8, e70094. [Google Scholar] [CrossRef]
- Drewry, J.J.; Carrick, S.; Penny, V.; Dando, J.; Koele, N. Effect of Irrigation on Soil Physical Properties on Temperate Pastoral Farms: A Regional New Zealand Study. Soil Res. 2022, 60, 760–771. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]






| Year | Jan (%) | Feb (%) | Mar (%) | Apr (%) | May (%) | Jun (%) | Jul (%) | Aug (%) | Sep (%) | Oct (%) | Nov (%) | Dec (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2014 | 3.5 | −23.3 | −44.3 | 36.9 | 20.9 | −28.2 | −32.1 | −9.1 | −17.1 | 50.8 | 41.6 | −34.9 |
| 2015 | −71.9 | −16.4 | −24.1 | 7.0 | −78.9 | 56.0 | −33.3 | 25.2 | −9.7 | −61.6 | 20.8 | 18.8 |
| 2016 | −13.2 | 36.8 | 63.7 | 19.0 | 43.8 | 92.5 | −40.5 | 4.6 | −1.8 | −42.5 | −35.2 | 33.6 |
| 2017 | 51.9 | 0.3 | −10.5 | 10.1 | −9.9 | −57.6 | −28.9 | 2.3 | −18.1 | −4.1 | 39.6 | −55.1 |
| 2018 | −42.0 | 46.3 | −13.1 | −27.1 | 20.6 | −33.5 | −29.7 | −47.2 | −12.5 | 78.5 | 12.6 | −9.6 |
| 2019 | 27.7 | 13.6 | 7.1 | −34.1 | −37.0 | −25.7 | −56.7 | −54.4 | −69.9 | −67.0 | −68.0 | −7.4 |
| 2020 | 57.2 | −34.7 | −19.6 | −5.3 | −2.0 | −26.0 | 125.1 | −56.1 | 14.8 | 12.4 | 35.1 | −32.5 |
| 2021 | −14.6 | −65.8 | 58.5 | −17.0 | 90.2 | −27.0 | −27.7 | 26.9 | 116.9 | −30.1 | −37.5 | 114.0 |
| 2022 | −38.1 | 57.3 | −1.5 | 19.0 | −29.5 | 52.3 | 25.0 | 32.5 | 72.2 | 118.5 | 58.6 | 24.8 |
| 2023 | 39.5 | −14.1 | −16.2 | −8.6 | −18.0 | −2.8 | 98.9 | 75.3 | −75.0 | −54.9 | −67.6 | −51.8 |
| Data | Units | Valid Range | Scale Factor |
|---|---|---|---|
| Sur_refl_b01:500 m Surface Reflectance Band 1 (620–670 nm) | Reflectance | −100–16,000 | 0.0001 |
| Sur_refl_b02:500 m Surface Reflectance Band 2 (841–876 nm) | Reflectance | −100–16,000 | 0.0001 |
| Sur_refl_b03: 500 m Surface Reflectance Band 3 (459–479 nm) | Reflectance | −100–16,000 | 0.0001 |
| Sur_refl_b04: 500 m Surface Reflectance Band 4 (545–565 nm) | Reflectance | −100–16,000 | 0.0001 |
| Sur_refl_b05: 500 m Surface Reflectance Band 5 (1230–1250 nm) | Reflectance | −100–16,000 | 0.0001 |
| Sur_refl_b06: 500 m Surface Reflectance Band 6 (1628–1652 nm) | Reflectance | −100–16,000 | 0.0001 |
| Sur_refl_b07: 500 m Surface Reflectance Band 7 (2105–2155 nm) | Reflectance | −100–16,000 | 0.0001 |
| Data Source | Spatial Resolution | Temporal Resolution/Period | Purpose of Use |
|---|---|---|---|
| MODIS MOD09A1 | 500 m | 8-day composites, 2014–2023 | Used to derive vegetation-based drought indicators (NDVI, NDDI) |
| BMKG Monthly Rainfall Data | Point-based (meteorological station) | Monthly observations, 2014–2023 | Served as the foundation for the selection of images utilized in the analysis |
| Land Use Map—www.tanahair.indonesia.go.id | National mapping scale (1:40,000) | Static dataset: accessed on 8 January 2025 | Utilized to classify land use types within Batang Anai Subdistrict and to evaluate land use-specific drought exposure |
| Administrative Boundary Data (BIG) | National mapping scale | Static dataset | Used to delineate the study area boundary for spatial analysis |
| Year | Available Data Image | Cloud Percentage (%) | Chosen Data Image |
|---|---|---|---|
| 2018 | 4 July | 16.39 | 20 July |
| 12 July | 5.21 | ||
| 20 July | 5.05 | ||
| 28 July | 86.26 | ||
| 2019 | 4 July | 3.22 | 12 July |
| 12 July | 1.68 | ||
| 20 July | 21.07 | ||
| 28 July | 22.36 | ||
| 2020 | 3 July | 8.12 | 3 July |
| 11 July | 18.23 | ||
| 19 July | 39.51 | ||
| 27 July | 30.93 | ||
| 2021 | 4 July | 33.07 | 20 July |
| 12 July | 20.06 | ||
| 20 July | 0.46 | ||
| 28 July | 4.29 | ||
| 2022 | 4 July | 13.94 | 12 July |
| 12 July | 1.53 | ||
| 20 July | 17.76 | ||
| 28 July | 30.17 | ||
| 2023 | 4 July | 11.49 | 20 July |
| 12 July | 29.25 | ||
| 20 July | 0.31 | ||
| 28 July | 19.14 |
| Class | Index NDVI | Explanation |
|---|---|---|
| 1 | −1 to −0.03 | Unplanted |
| 2 | −0.03 to 0.15 | Low |
| 3 | 0.15 to 0.25 | Moderate |
| 4 | 0.26 to 0.35 | Severe |
| 5 | 0.35 to 0.922975 | High |
| Class | Index NDWI | Explanation |
|---|---|---|
| 1 | −0.732996 to 0 | Non-Water Body |
| 2 | 0 to 0.33 | Moderate |
| 3 | 0.33 to 1 | High |
| Class | Index NDDI | Explanation |
|---|---|---|
| 1 | −1 to 0 | No Drought |
| 2 | 0 to 0.1 | Low |
| 3 | 0.1 to 0.2 | Moderate |
| 4 | 0.2 to 0.3 | Severe |
| 5 | 0.3 to 0.4 | Extreme |
| 6 | 0.4 to 0.5 | Very Extreme |
| Land Use | Year | |||||
|---|---|---|---|---|---|---|
| 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
| Plantation | 0.73 | 0.74 | 0.73 | 0.72 | 0.73 | 0.73 |
| Rice Fields | 0.69 | 0.70 | 0.69 | 0.67 | 0.70 | 0.66 |
| Dry Fields | 0.67 | 0.65 | 0.69 | 0.66 | 0.63 | 0.61 |
| Average | 0.69 | 0.69 | 0.70 | 0.68 | 0.68 | 0.66 |
| Land Use | Year | |||||
|---|---|---|---|---|---|---|
| 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
| Plantation | 0.60 | 0.60 | 0.58 | 0.57 | 0.57 | 0.59 |
| Rice Fields | 0.58 | 0.58 | 0.56 | 0.50 | 0.52 | 0.54 |
| Dry Fields | 0.53 | 0.51 | 0.53 | 0.53 | 0.46 | 0.49 |
| Average | 0.57 | 0.56 | 0.56 | 0.53 | 0.52 | 0.54 |
| Land Use | Year | |||||
|---|---|---|---|---|---|---|
| 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
| Plantation | 0.09 | 0.10 | 0.11 | 0.12 | 0.12 | 0.10 |
| Rice Fields | 0.08 | 0.09 | 0.10 | 0.14 | 0.15 | 0.09 |
| Dry Fields | 0.11 | 0.13 | 0.13 | 0.11 | 0.16 | 0.11 |
| Average | 0.09 | 0.11 | 0.11 | 0.12 | 0.14 | 0.10 |
| Year | No Drought (ha) | Abnormally Low (ha) | Moderate (ha) | Severe (ha) | Extreme (ha) | Exceptional/Very Extreme (ha) |
|---|---|---|---|---|---|---|
| 2018 | 357 | 2926 | 3542 | 79 | 7 | 0 |
| 2019 | 203 | 2838 | 3877 | 77 | 3 | 8 |
| 2020 | 104 | 2366 | 4399 | 187 | 23 | 0 |
| 2021 | 61 | 1328 | 5231 | 366 | 36 | 3 |
| 2022 | 30 | 1557 | 4441 | 845 | 80 | 8 |
| 2023 | 266 | 2531 | 4066 | 95 | 0 | 0 |
| Percentage | 2.43% | 32.30% | 60.93% | 3.93% | 0.36% | 0.05% |
| Drought Levels | Plantation (%) | Rice Fields (%) | Dry Fields (%) |
|---|---|---|---|
| No Drought | 96.3 | 0.0 | 3.7 |
| Abnormally Low | 65.8 | 30.9 | 3.3 |
| Moderate | 58.6 | 39.5 | 1.9 |
| Severe | 27.2 | 68.3 | 4.4 |
| Extreme | 34.3 | 58.1 | 7.6 |
| Exceptional/Very Extreme | 3.8 | 0.0 | 96.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irsyad, F.; Sari, N.; Putri, A.E.; Filipović, V. Application of the Normalized Difference Drought Index (NDDI) for Monitoring Agricultural Drought in Tropical Environments. Land 2025, 14, 2431. https://doi.org/10.3390/land14122431
Irsyad F, Sari N, Putri AE, Filipović V. Application of the Normalized Difference Drought Index (NDDI) for Monitoring Agricultural Drought in Tropical Environments. Land. 2025; 14(12):2431. https://doi.org/10.3390/land14122431
Chicago/Turabian StyleIrsyad, Fadli, Nurmala Sari, Annisa Eka Putri, and Villim Filipović. 2025. "Application of the Normalized Difference Drought Index (NDDI) for Monitoring Agricultural Drought in Tropical Environments" Land 14, no. 12: 2431. https://doi.org/10.3390/land14122431
APA StyleIrsyad, F., Sari, N., Putri, A. E., & Filipović, V. (2025). Application of the Normalized Difference Drought Index (NDDI) for Monitoring Agricultural Drought in Tropical Environments. Land, 14(12), 2431. https://doi.org/10.3390/land14122431

