The Geographic Spread and Preferences of Tourists Revealed by User-Generated Information on Jeju Island, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Visitation Rate Data Sources
2.2.1. On-site survey visits
2.2.2. Photograph visits
2.2.3. Tweet Visits
2.2.4. Mobile Visits
2.3. Visitation Rate Comparison at Tourist Sites
2.4. Revealed Preferences of Tourists
2.4.1. Response Variables
2.4.2. Predictor Variables
3. Results
3.1. Visitation Rate Comparison at Tourist Sites
3.2. Tourist Proportions
3.3. Revealed Preferences of Tourists
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Name | Years | Lat | Long |
---|---|---|---|
Bijarim forest | 2005–2014 | 33.48440 | 126.8067 |
Cheonjeyeon falls | 2005–2014 | 33.25057 | 126.4161 |
Cheonjiyeon falls | 2005–2014 | 33.24693 | 126.5544 |
Citrus museum | 2009–2014 | 33.27134 | 126.6069 |
Daepo Jusangjeolli Cliff | 2006–2014 | 33.23767 | 126.4250 |
Extreme island | 2005–2005 | 33.24692 | 126.5074 |
Folk & natural museum | 2005–2014 | 33.50642 | 126.5316 |
Gidang art museum | 2007–2014 | 33.24485 | 126.5512 |
Haenyeo museum | 2007–2014 | 33.52357 | 126.8634 |
Hallim park | 2005–2012 | 33.38948 | 126.2392 |
Hangmong historical site | 2005–2014 | 33.45233 | 126.4078 |
Hanwha aqua planet Jeju | 2014–2014 | 33.43302 | 126.9275 |
Hwarakwon | 2005–2007 | 33.24529 | 126.5788 |
Ilchul land | 2005–2014 | 33.38357 | 126.8413 |
Jeju Chusa memorial hall | 2005–2014 | 33.25054 | 126.2785 |
Jeju folk village museum | 2005–2012 | 33.32252 | 126.8420 |
Jeju hangil memorial hall | 2005–2014 | 33.54154 | 126.6429 |
Jeju love land | 2005–2012 | 33.45155 | 126.4900 |
Jeju minimini land | 2005–2012 | 33.43334 | 126.6746 |
Jeju museum of art | 2014–2014 | 33.45242 | 126.4899 |
Jeju sculpture park | 2005–2012 | 33.25366 | 126.3222 |
Jeju starlight world park and planetarium | 2010–2014 | 33.44450 | 126.5492 |
Jeju stone park | 2007–2014 | 33.44843 | 126.6586 |
Jeolmul natural recreation forest | 2005–2014 | 33.43696 | 126.6282 |
Jeongbang falls | 2005–2014 | 33.24471 | 126.5716 |
Manjanggul cave | 2005–2014 | 33.52850 | 126.7712 |
Mara ocean park | 2005–2014 | 33.20676 | 126.2912 |
Pacific land | 2005–2005 | 33.24404 | 126.4155 |
Samseonghyeol | 2005–2012 | 33.50424 | 126.5292 |
Sanbangsan | 2005–2014 | 33.24141 | 126.3130 |
Sangumburi | 2005–2012 | 33.43290 | 126.6931 |
Seobok museum | 2005–2014 | 33.24487 | 126.5709 |
Seogwipo natural recreation forest | 2005–2014 | 33.31132 | 126.4600 |
Seogwipo provincial marine park | 2005–2014 | 33.23897 | 126.5588 |
Seongsan ilchulbong | 2005–2014 | 33.45824 | 126.9423 |
Sinyoung film museum | 2005–2005 | 33.27432 | 126.7043 |
Soingook theme park | 2005–2012 | 33.29039 | 126.3225 |
Spirited garden | 2005–2012 | 33.32559 | 126.2551 |
Teddy Bear museum | 2005–2013 | 33.25028 | 126.4121 |
Yeomiji botanical gardens | 2005–2005 | 33.25261 | 126.4142 |
References
- Frumkin, H.; Bratman, G.N.; Breslow, S.J.; Cochran, B.; Kahn, P.H.; Lawler, J.J.; Levin, P.S.; Tandon, P.S.; Varanasi, U.; Wolf, K.L.; et al. Nature Contact and Human Health: A Research Agenda. Environ. Health Perspect. 2017, 125, 075001. [Google Scholar] [CrossRef]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Russell, R.; Guerry, A.D.; Balvanera, P.; Gould, R.K.; Basurto, X.; Chan, K.M.A.; Klain, S.; Levine, J.; Tam, J. Humans and Nature: How Knowing and Experiencing Nature Affect Well-Being. Annu. Rev. Environ. Res. 2013, 38, 473–502. [Google Scholar] [CrossRef]
- World Travel and Tourism Council Benchmark Report 2017—South Korea. Available online: https://www.wttc.org/-/media/files/reports/benchmark-reports/country-reports-2017/south-korea.pdf (accessed on 28 June 2018).
- Wight, P. Tools for sustainability analysis in planning and managing tourism and recreation in the destination. In Sustainable Tourism: A Geographical Perspective; Hall, C.M., Lew, A.A., Eds.; Addison Wesley Longman Ltd: Harlow, UK, 1998; pp. 75–91. [Google Scholar]
- Feather, P.; Hellerstein, D.; Tomasi, T. A Discrete-Count Model of Recreational Demand; Social Science Research Network: Rochester, NY, USA, 1995. [Google Scholar]
- Ward, F.A.; Loomis, J.B. The Travel Cost Demand Model as an Environmental Policy Assessment Tool: A Review of Literature. West. J. Agric. Econ. 1986, 11, 164–178. [Google Scholar]
- Adamowicz, W.; Swait, J.; Boxall, P.; Louviere, J.; Williams, M. Perceptions versus Objective Measures of Environmental Quality in Combined Revealed and Stated Preference Models of Environmental Valuation. J. Environ. Econ. Manag. 1997, 32, 65–84. [Google Scholar] [CrossRef]
- Jones, A.; Wright, J.; Bateman, I.; Schaafsma, M. Estimating Arrival Numbers for Informal Recreation: A Geographical Approach and Case Study of British Woodlands. Sustainability 2010, 2, 684–701. [Google Scholar] [CrossRef]
- La Rosa, D.; Spyra, M.; Inostroza, L. Indicators of Cultural Ecosystem Services for urban planning: A review. Ecol. Indic. 2016, 61 Pt 1, 74–89. [Google Scholar] [CrossRef]
- Duffield, B.S.; Coppock, J.T. The Delineation of Recreational Landscapes: The Role of a Computer-Based Information System. Trans. Inst. Br. Geogr. 1975, 141–148. [Google Scholar] [CrossRef]
- Levinsohn, A.; Langford, G.; Rayner, M.; Rintoul, J.; Eccles, R. Eccles A micro-computer based GIS for assessing recreation suitability. In Proceedings of the GIS 87 Symposium, Falls Church, VA, USA, 26–30 October 1987; pp. 739–747. [Google Scholar]
- Hanley, N.; Colombo, S.; Tinch, D.; Black, A.; Aftab, A. Estimating the benefits of water quality improvements under the Water Framework Directive: Are benefits transferable? Eur. Rev. Agric. Econ. 2006, 33, 391–413. [Google Scholar] [CrossRef]
- Alessa, L.; Kliskey, A.; Brown, G. Social–ecological hotspots mapping: A spatial approach for identifying coupled social–ecological space. Landsc. Urb. Plan. 2008, 85, 27–39. [Google Scholar] [CrossRef]
- Ancona, Z.H.; Semmens, D.J.; Sherrouse, B.C. Social-Value Maps for Arapaho, Roosevelt, Medicine Bow, Routt, and White River National Forests, Colorado and Wyoming; Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2016.
- Kliskey, A.D. Recreation terrain suitability mapping: A spatially explicit methodology for determining recreation potential for resource use assessment. Landsc. Urb. Plan. 2000, 52, 33–43. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Clement, J.M.; Semmens, D.J. A GIS application for assessing, mapping, and quantifying the social values of ecosystem services. Appl. Geogr. 2011, 31, 748–760. [Google Scholar] [CrossRef]
- Samuelson, P.A. Consumption Theory in Terms of Revealed Preference. Economica 1948, 15, 243–253. [Google Scholar] [CrossRef]
- Elwood, S.; Goodchild, M.F.; Sui, D.Z. Researching Volunteered Geographic Information: Spatial Data, Geographic Research, and New Social Practice. Annu. Associ. Amer. Geogr. 2012, 102, 571–590. [Google Scholar] [CrossRef]
- Girardin, F.; Calabrese, F.; Fiore, F.D.; Ratti, C.; Blat, J. Digital Footprinting: Uncovering Tourists with User-Generated Content. IEEE Pervasive Comput. 2008, 7, 36–43. [Google Scholar] [CrossRef]
- Levin, N.; Lechner, A.M.; Brown, G. An evaluation of crowdsourced information for assessing the visitation and perceived importance of protected areas. Appl. Geogr. 2017, 79, 115–126. [Google Scholar] [CrossRef]
- Stefanidis, A.; Crooks, A.; Radzikowski, J. Harvesting ambient geospatial information from social media feeds. GeoJournal 2013, 78, 319–338. [Google Scholar] [CrossRef]
- Wood, S.A.; Guerry, A.D.; Silver, J.M.; Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 2013, 3, 2976. [Google Scholar] [CrossRef]
- Calabrese, F.; Ferrari, L.; Blondel, V.D. Urban Sensing Using Mobile Phone Network Data: A Survey of Research. ACM Comput. Surv. 2014, 47, 25:1–25:20. [Google Scholar] [CrossRef]
- Steenbruggen, J.; Tranos, E.; Nijkamp, P. Data from mobile phone operators: A tool for smarter cities? Telecommun. Policy 2015, 39, 335–346. [Google Scholar] [CrossRef]
- Donahue, M.L.; Keeler, B.L.; Wood, S.A.; Fisher, D.M.; Hamstead, Z.A.; McPhearson, T. Using social media to understand drivers of urban park visitation in the Twin Cities, MN. Landsc. Urb. Plan. 2018, 175, 1–10. [Google Scholar] [CrossRef]
- Fisher, D.M.; Wood, S.A.; White, E.M.; Blahna, D.J.; Lange, S.; Weinberg, A.; Tomco, M.; Lia, E. Recreational use in dispersed public lands measured using social media data and on-site counts. J. Environ. Manag. 2018, 222, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Hamstead, Z.A.; Fisher, D.; Ilieva, R.T.; Wood, S.A.; McPhearson, T.; Kremer, P. Geolocated social media as a rapid indicator of park visitation and equitable park access. Comput. Environ. Urb. Sys. 2018, 72, 38–50. [Google Scholar] [CrossRef]
- Keeler, B.L.; Wood, S.A.; Polasky, S.; Kling, C.; Filstrup, C.T.; Downing, J.A. Recreational demand for clean water: Evidence from geotagged photographs by visitors to lakes. Front. Ecol. Environ. 2015, 13, 76–81. [Google Scholar] [CrossRef]
- Schirpke, U.; Timmermann, F.; Tappeiner, U.; Tasser, E. Cultural ecosystem services of mountain regions: Modelling the aesthetic value. Ecol. Indic. 2016, 69, 78–90. [Google Scholar] [CrossRef]
- Sessions, C.; Wood, S.A.; Rabotyagov, S.; Fisher, D.M. Measuring recreational visitation at U.S. National Parks with crowd-sourced photographs. J. Environ. Manag. 2016, 183 Pt 3, 703–711. [Google Scholar] [CrossRef]
- Van Zanten, B.T.; van Berkel, D.B.; Meentemeyer, R.K.; Smith, J.W.; Tieskens, K.F.; Verburg, P.H. Continental-scale quantification of landscape values using social media data. PNAS 2016, 113, 12974–12979. [Google Scholar] [CrossRef]
- Walden-Schreiner, C.; Leung, Y.-F.; Tateosian, L. Digital footprints: Incorporating crowdsourced geographic information for protected area management. Appl. Geogr. 2018, 90, 44–54. [Google Scholar] [CrossRef]
- González, M.C.; Hidalgo, C.A.; Barabási, A.-L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef]
- Lee, W.K.; Sohn, S.Y.; Heo, J. Utilizing mobile phone-based floating population data to measure the spatial accessibility to public transit. Appl. Geogr. 2018, 92, 123–130. [Google Scholar] [CrossRef]
- Song, C.; Qu, Z.; Blumm, N.; Barabási, A.-L. Limits of Predictability in Human Mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef]
- Arkema, K.K.; Verutes, G.M.; Wood, S.A.; Clarke-Samuels, C.; Rosado, S.; Canto, M.; Rosenthal, A.; Ruckelshaus, M.; Guannel, G.; Toft, J.; et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. PNAS 2015, 112, 7390–7395. [Google Scholar] [CrossRef]
- Hausmann, A.; Toivonen, T.; Slotow, R.; Tenkanen, H.; Moilanen, A.; Heikinheimo, V.; Di Minin, E. Social Media Data Can Be Used to Understand Tourists’ Preferences for Nature-Based Experiences in Protected Areas. Conserv. Lett. 2017. [Google Scholar] [CrossRef]
- Hausmann, A.; Toivonen, T.; Heikinheimo, V.; Tenkanen, H.; Slotow, R.; Di Minin, E. Social media reveal that charismatic species are not the main attractor of ecotourists to sub-Saharan protected areas. Sci. Rep. 2017, 7, 763. [Google Scholar] [CrossRef]
- Heikinheimo, V.; Minin, E.D.; Tenkanen, H.; Hausmann, A.; Erkkonen, J.; Toivonen, T. User-Generated Geographic Information for Visitor Monitoring in a National Park: A Comparison of Social Media Data and Visitor Survey. ISPRS Int. J. Geo-Inf. 2017, 6, 85. [Google Scholar] [CrossRef]
- Sonter, L.J.; Watson, K.B.; Wood, S.A.; Ricketts, T.H. Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media. PLoS ONE 2016, 11, e0162372. [Google Scholar] [CrossRef]
- Goodchild, M.F. The quality of big (geo)data. Dialogues Hum. Geogr. 2013, 3, 280–284. [Google Scholar] [CrossRef]
- Ricciato, F.; Widhalm, P.; Pantisano, F.; Craglia, M. Beyond the “single-operator, CDR-only” paradigm: An interoperable framework for mobile phone network data analyses and population density estimation. Pervasive Mob. Comput. 2017, 35, 65–82. [Google Scholar] [CrossRef]
- Tsikerdekis, M.; Zeadally, S. Online Deception in Social Media. Commun. ACM 2014, 57, 72–80. [Google Scholar] [CrossRef]
- KOSIS Korean Statistical Information Service. Available online: http://kosis.kr/eng/index/index.do (accessed on 27 March 2019).
- Jeju Special Self-Governing Province Natural Environment Ecology Information System. Available online: http://nature.jeju.go.kr/ (accessed on 27 March 2019).
- Jeju Special Self-Governing Province. Investigation of Tourists Visiting Jeju Special Self-Governing Province in 2014; Jeju Special Self-Governing Province Government: Jeju City, South Korea, 2015.
- Tourism Knowledge Information System. Available online: https://www.tour.go.kr/ (accessed on 1 September 2015).
- Flickr. Available online: https://www.flickr.com/services/developer/api/ (accessed on 1 September 2015).
- Sharp, R. InVEST User Guide—InVEST 3.6.0 documentation. Available online: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/ (accessed on 27 March 2019).
- Twitter. Available online: https://developer.twitter.com (accessed on 1 September 2015).
- Leetaru, K.; Wang, S.; Cao, G.; Padmanabhan, A.; Shook, E. Mapping the global Twitter heartbeat: The geography of Twitter. First Monday 2013, 18. [Google Scholar] [CrossRef]
- Martinez-Harms, M.J.; Bryan, B.A.; Wood, S.A.; Fisher, D.M.; Law, E.; Rhodes, J.R.; Dobbs, C.; Biggs, D.; Wilson, K.A. Inequality in access to cultural ecosystem services from protected areas in the Chilean biodiversity hotspot. Sci. Total Environ. 2018, 636, 1128–1138. [Google Scholar] [CrossRef]
- Mahmud, J.; Nichols, J.; Drews, C. Home Location Identification of Twitter Users. ACM Trans. Intell. Syst. Technol. 2014, 5, 47:1–47:21. [Google Scholar] [CrossRef]
- Tenkanen, H.; Di Minin, E.; Heikinheimo, V.; Hausmann, A.; Herbst, M.; Kajala, L.; Toivonen, T. Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas. Sci. Rep. 2017, 7, 17615. [Google Scholar] [CrossRef]
- Guerry, A.D.; Polasky, S.; Lubchenco, J.; Chaplin-Kramer, R.; Daily, G.C.; Griffin, R.; Ruckelshaus, M.; Bateman, I.J.; Duraiappah, A.; Elmqvist, T.; et al. Natural capital and ecosystem services informing decisions: From promise to practice. PNAS 2015, 112, 7348–7355. [Google Scholar] [CrossRef]
- Ruckelshaus, M.; McKenzie, E.; Tallis, H.; Guerry, A.; Daily, G.; Kareiva, P.; Polasky, S.; Ricketts, T.; Bhagabati, N.; Wood, S.A.; et al. Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions. Ecol. Econom. 2015, 115, 11–21. [Google Scholar] [CrossRef]
- Ryan, R.L. The social landscape of planning: Integrating social and perceptual research with spatial planning information. Landsc. Urb. Plan. 2011, 100, 361–363. [Google Scholar] [CrossRef]
- Casalegno, S.; Inger, R.; DeSilvey, C.; Gaston, K.J. Spatial Covariance between Aesthetic Value & Other Ecosystem Services. PLoS ONE 2013, 8, e68437. [Google Scholar]
- Guerrero, P.; Møller, M.S.; Olafsson, A.S.; Snizek, B. Revealing Cultural Ecosystem Services through Instagram Images: The Potential of Social Media Volunteered Geographic Information for Urban Green Infrastructure Planning and Governance. Urb. Plan. 2016, 1, 1. [Google Scholar] [CrossRef]
- Tenerelli, P.; Demšar, U.; Luque, S. Crowdsourcing indicators for cultural ecosystem services: A geographically weighted approach for mountain landscapes. Ecol. Indic. 2016, 64, 237–248. [Google Scholar] [CrossRef]
- Clec’h, S.L.; Oszwald, J.; Decaens, T.; Desjardins, T.; Dufour, S.; Grimaldi, M.; Jegou, N.; Lavelle, P. Mapping multiple ecosystem services indicators: Toward an objective-oriented approach. Ecol. Indic. 2016, 69, 508–521. [Google Scholar] [CrossRef]
- Zielstra, D.; Hochmair, H.H. Positional accuracy analysis of Flickr and Panoramio images for selected world regions. J. Spat. Sci. 2013, 58, 251–273. [Google Scholar] [CrossRef]
- Gilbert, E.; Karahalios, K.; Sandvig, C. The Network in the Garden: An Empirical Analysis of Social Media in Rural Life. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; ACM: New York, NY, USA; pp. 1603–1612. [Google Scholar]
- Li, L.; Goodchild, M.F.; Xu, B. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartogr. Geogr. Inf. Sci. 2013, 40, 61–77. [Google Scholar] [CrossRef]
- Jul 31 2012 Social Network Analysis Report—Demographic—Geographic and Search Data Revealed. Ignite Social Media—The Original Social Media Agenc. 2012. Available online: https://www.ignitesocialmedia.com/social-media-stats/2012-social-network-analysis-report/ (accessed on 1 September 2015).
- Cessford, G.; Muhar, A. Monitoring options for visitor numbers in national parks and natural areas. J. Nat. Conserv. 2003, 11, 240–250. [Google Scholar] [CrossRef]
- Ruths, D.; Pfeffer, J. Social media for large studies of behavior. Science 2014, 346, 1063–1064. [Google Scholar] [CrossRef]
Predictor | Measurement | Units | Min | Max |
---|---|---|---|---|
beach | area | km2 | 0 | 0.076 |
ln(commercial zones) | area | km2 | 0 | 1.197 |
cultural sites | area | km2 | 0 | 0.648 |
distance to port (airports & ferry terminals) | distance | km*10 | 0 | 3.805 |
distance to road | distance | km | 0 | 9.390 |
forest | area | km2 | 0 | 2.600 |
golf course (and other sport facilities) | area | km2 | 0 | 1.352 |
industrial sites | area | km2 | 0 | 0.151 |
land | area | km2 | 0.002 | 2.600 |
natural monuments | area | km2 | 0 | 2.600 |
road | length | km*10 | 0 | 5.143 |
seacliff | area | km2 | 0 | 0.049 |
trail (Olle and Hallasan trails) | length | km | 0 | 10.61 |
viewpoint | count | count | 0 | 6 |
Predictor | Beta | Std. Error | p | Units |
---|---|---|---|---|
(Intercept) | 7.328 | 0.367 | <0.001 | |
beach | 45.255 | 15.733 | 0.0041 | km2 |
commercial zones | −9.707 | 2.557 | <0.001 | km2 |
cultural sites | 1.144 | 2.552 | 0.6540 | km2 |
distance to port | −0.509 | 0.114 | <0.001 | 10* km |
distance to road | −1.034 | 0.124 | <0.001 | km |
forest | −0.821 | 0.138 | <0.001 | km2 |
golf course | 2.483 | 0.654 | <0.001 | km2 |
industrial sites | 7.126 | 6.298 | 0.2581 | km2 |
land | 0.548 | 0.153 | <0.001 | km2 |
natural monuments | 0.514 | 0.221 | 0.0205 | km2 |
road | 3.069 | 0.248 | <0.001 | 10* km |
seacliff | 64.601 | 26.550 | 0.0152 | km2 |
trail | 0.462 | 0.095 | <0.001 | km |
viewpoint | 0.774 | 0.238 | 0.0012 | count |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fisher, D.M.; Wood, S.A.; Roh, Y.-H.; Kim, C.-K. The Geographic Spread and Preferences of Tourists Revealed by User-Generated Information on Jeju Island, South Korea. Land 2019, 8, 73. https://doi.org/10.3390/land8050073
Fisher DM, Wood SA, Roh Y-H, Kim C-K. The Geographic Spread and Preferences of Tourists Revealed by User-Generated Information on Jeju Island, South Korea. Land. 2019; 8(5):73. https://doi.org/10.3390/land8050073
Chicago/Turabian StyleFisher, David M., Spencer A. Wood, Young-Hee Roh, and Choong-Ki Kim. 2019. "The Geographic Spread and Preferences of Tourists Revealed by User-Generated Information on Jeju Island, South Korea" Land 8, no. 5: 73. https://doi.org/10.3390/land8050073
APA StyleFisher, D. M., Wood, S. A., Roh, Y. -H., & Kim, C. -K. (2019). The Geographic Spread and Preferences of Tourists Revealed by User-Generated Information on Jeju Island, South Korea. Land, 8(5), 73. https://doi.org/10.3390/land8050073