1. Introduction
Google Earth and Microsoft Bing Maps provide visual access to very high resolution (VHR) satellite imagery, defined here as imagery with a spatial resolution finer than 5 m. We have started to see this imagery being used across many different disciplines with increasing frequency. For example, using the search terms “Google Earth” or “Bing Imagery” in Scopus, which is a database of scientific abstracts and citations, reveals a steady increase from 2005 to 2016 in the number of papers that mention or use such imagery (
Figure S1), both across general domains (
Figure S2) and more specifically in remote sensing (
Figure S3). The imagery is used for different purposes but in remote sensing, mapping is the most frequent thematic area (
Figure S4) and map validation is the most commonly found application, i.e., producing an accuracy assessment of a map (
Figures S5 and S6). As many detailed features and objects can be seen from VHR imagery, e.g., buildings, roads and individual trees, reference data sets for map validation are increasingly being augmented with visual interpretation of Google Earth imagery, and producers and consumers of land-cover maps are using Google Earth to collect reference data for the validation of these products [
1,
2,
3,
4,
5]. At the same time, applications such as Geo-Wiki are using crowdsourcing to gather reference data sets for hybrid land cover map development and validation tasks based on visual interpretation of Google Earth and Microsoft Bing Maps [
6,
7,
8,
9,
10,
11], while the Collect Earth tool uses Google Earth imagery to gather data for forest inventories [
12,
13].
VHR imagery is also extremely useful for a range of different environmental monitoring applications, from detecting deforestation to monitoring cropland expansion or abandonment. Here we do not refer to the use of the imagery directly in classification, either the use of spectral information from VHR imagery that has been purchased or the red-green-blue (RGB) images themselves. Instead we refer to applications such as Collect Earth, which can be used to undertake monitoring activities through statistical surveys with visual interpretation [
12,
13]. Unlike Microsoft Bing Maps, Google Earth provides access to historical imagery, archiving the images as they are added to their system. This historical imagery represents a valuable source of information for monitoring changes in the landscape over time. However, since Google Earth and Microsoft Bing Maps present the satellite imagery in a seamless fashion, this may lead to the perception that the satellite data are continuous and homogeneous in nature, both in time and space. Yet in reality, the information is actually a mosaic of many images from different time periods, different spatial resolutions (15 m to 10 cm) and multiple image providers (from Landsat satellites operated by National Aeronautics and Space Administration (NASA) and United States Geological Survey (USGS) to commercial providers such as Digital Globe); see e.g., [
14]. Moreover, important to note is that Google Earth and Microsoft Bing Maps do not include all of the available VHR imagery from all providers but only a subset of images that have been negotiated through agreements. Hence the satellite image landscape is actually fractured, with much of the globe still covered by Landsat resolution imagery, i.e., 15 m panchromatic. Although the Sentinel-2 of the European Space Agency (ESA) is now freely available and may slowly replace the base Landsat imagery in Google Earth, a 10 m spatial resolution is still not sufficient for visual interpretation of many landscape features. Moreover, for users of Google Earth and Microsoft Bing Maps, little is known about the spatial availability of the VHR imagery or how much historical imagery exists in Google Earth and where it can be found, which can limit the use of this resource for environmental monitoring applications.
In this paper we provide an overview of the availability of VHR imagery globally by creating a systematic sample at each latitude/longitude intersection and extracting the type of imagery and the dates available for both Google Earth and Microsoft Bing Maps. As mentioned above, we define VHR imagery as any imagery that has a spatial resolution finer than 5 m. Although the term ‘VHR imagery’ is often used to denote imagery at a resolution measured in centimeters, there are also other types of imagery available such as SPOT (1.5 to 5 m resolution), which can be useful in recognizing certain landscape features. This is the first time that metadata on the availability of VHR imagery in space and time has been made available for Google Earth and Microsoft Bing Maps. The information can be used, for example, in the design of reference databases for remote sensing, particularly in applications that involve change detection. The overview provided here corresponds to the first week of January 2017, after which Google deprecated the Google Earth application programming interface (API)/plugin and it was no longer possible to obtain the image dates from this source. With a focus on specific geographical areas, we then examine the availability of VHR imagery and its potential impact on monitoring world protected areas, deforestation, cropland and urban expansion using visual interpretation.
4. Discussion
The results have shown that there is clearly unequal spatial and temporal coverage by VHR imagery across the globe. There are parts of the world that have no VHR imagery, i.e., high northern latitudes, countries in the north-western part of South America, e.g., Afghanistan, Ecuador and Colombia, parts of the Saharan Desert, parts of the Congo Basin and Indonesia/Papua New Guinea. Hence it is difficult to do any monitoring in these areas since there is only Landsat panchromatic (15 m resolution) base imagery available. In the rest of the world there is some spatial complementarity between Google Earth and Microsoft Bing Maps, e.g., there are only Microsoft Bing Maps present in parts of Canada, the Amazon, former Soviet Union countries and parts of Australia where Google Earth has no coverage. In contrast, Google Earth imagery adds very little additional spatial coverage but tends to be more recent than Microsoft Bing Maps and has the benefit of a historical archive, which adds potential value for change detection and monitoring purposes using visual interpretation. However, the reality is that for applications where a time series of images would greatly benefit monitoring, the amount of historical imagery is actually quite small.
We then focused on four applications where the use of VHR satellite imagery would greatly benefit monitoring and change detection, i.e., protected, forested, cropland and urban areas. Due to increased competition for land [
24], protected land areas are threatened, impacting biodiversity and natural resources [
16,
25]; hence monitoring is vital. The availability of VHR imagery in protected areas was surprisingly poor in North America, eastern Europe and South America, particularly in Google Earth within the latter two regions. On average there are only 2 to 3 historical images in different years; hence monitoring is possible in some parts of the world but it is limited.
For deforestation, the picture is worse, particularly in a region such as the Amazon. Although coverage by Microsoft Bing Maps is relatively good, less than 50% of the points falling in the Amazon biome were covered by VHR imagery in Google Earth, with on average only 1 year of imagery. Thus, there is a clear lack of information in the historical archive for monitoring change. The spatial-temporal coverage is better for Indonesia and Malaysia where there are three images on average in different years in Google Earth while most of the other regions have 2 years on average. Although new tools and products for monitoring deforestation have appeared recently, e.g., through Global Forest Watch, the basis of change detection is Landsat imagery, which still requires validation with VHR imagery.
For studies in crop expansion or abandonment and urbanization, the availability of suitable VHR imagery is much better. The coverage by VHR imagery in countries with poor crop-monitoring systems, i.e., those currently subject to cropland expansion and losses, and those areas classified as urban is extremely high. There are time series of images available, and for cropland, images from more than one season. Hence there is quite some potential for using this resource for change detection in cropland and urban areas and the validation of remotely-sensed products.
From the Scopus search and the breakdown by discipline (
Figures S1 and S2), the increasing value of Google Earth and Microsoft Bing Maps is evident.
Figures S1 and S5 confirm the increasing use of imagery from Google Earth and for validation tasks in remote sensing, respectively, while new crowdsourced reference data sets based on Google Earth and Microsoft Bing Maps are appearing [
8,
26]. The collection of in situ data is resource intensive, both in terms of time and money, e.g., the LUCAS (Land Use Cover Area frame Survey) data set represents the only source of in situ data for European Union (EU) member countries where ca 300 K points are surveyed on the ground every 3 years [
27]. The implementation in 2018 alone will cost more than 12 million euros [
28]. Hence the visual interpretation of VHR imagery (via Google Earth and Microsoft Bing Maps) has become a more cost-effective approach for building reference data sets for the validation of land cover and land-use maps, as well as inputs to the training algorithms that create these products. Hence from an environmental and research perspective, it is important that access to these data sources continues and that gaps in VHR imagery are filled where possible. The costs of purchasing data from providers such as Digital Globe are high although it should be noted that the Digital Globe Foundation does provide data grants for academic purposes. Moreover, we are increasingly moving away from the development of static products of land cover and land use and are interested in detecting change over time, e.g., forest loss and gain over time [
29] or monitoring the change in water bodies over a 32 year period [
30].
Figure S6 shows that the majority of papers are using imagery from different time periods, which reflects this trend. As new land-cover products appear, e.g., the recent ESA CCI (European Space Agency Climate Change Initiative) land cover time series from 1992–2012, access to VHR imagery for validation of land cover change is vital, particularly if users want to independently validate the product for their own user needs. The spatial-temporal metadata on the image dates and the availability of VHR imagery presented here can be used to guide sample design for validation of land-cover time series. However, this is only an overview in time so having a new API for accessing the dates of imagery in Google Earth as well as other meta-information about the satellite imagery would be extremely useful for a range of applications. Unfortunately, at present, users can only collect such metadata manually with the help of open access tools such as Collect Earth or LACO-Wiki. We acknowledge this as a current limitation but as this field is changing rapidly, this situation may improve in the future. A very good example are the tools provided by Copernicus and the company Sinergise, which were developed to collect and analyze satellite imagery, in particular the open access Sentinel images at 10 m resolution [
31,
32].
At the same time, there are encouraging initiatives to improve the availability and accessibility of VHR imagery in the private sector, e.g., the satellite company Planet has 149 of their small dove satellites orbiting the Earth, which together provide daily coverage of the Earth’s land surface at a 3 to 3.5 m resolution. Free access to 10,000 km
2 of VHR imagery per month is available for non-commercial purposes [
33]. The Radiant Earth initiative from the Bill and Melinda Gates Foundation and the Omidyar Network is making a considerable amount of satellite imagery free for humanitarian and environmental causes [
34]. Moreover, as mentioned previously, Digital Globe provides grants for academic access. Most of the value in VHR satellite imagery is in the up-to-date nature of the information. Commercial image providers should be encouraged to unlock their historical archives, where the information has much less commercial value, and share the imagery via applications such as Google Earth. Not only does this benefit research, it can aid environmental monitoring by many different stakeholders in the public sector as well as non-governmental organizations and charities. New applications can be built to mobilize citizens to aid in change detection, which can help tackle many pressing environmental problems. The value of VHR satellite imagery available through Google Earth and Microsoft Bing Maps should not be underestimated but it has the potential to be so much more.