Denoising of Binary Built-Up Maps Using Multi-Temporal Image Processing Thresholding
Abstract
1. Introduction
2. Materials and Methods
2.1. Imagery
2.2. Study Sites
2.3. Automated Approach to Identify Built-Up Land
2.4. Ground Truth Validation
2.5. Accuracy Statistics
3. Results
3.1. Overview of Results
3.2. Matthews Correlation Coefficient Accuracy Statistic Results
4. Discussion
Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaur, S.; Singh, R.A. Comprehensive review on land use/land cover (LULC) change modeling for urban development: Current status and future prospects. Sustainability 2023, 15, 903. [Google Scholar] [CrossRef]
- Naikoo, M.W.; Rihan, M.; Ishtiaque, M.; Shahfahad. Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using Landsat datasets. J. Urban Manag. 2020, 9, 347–359. [Google Scholar] [CrossRef]
- Rakuasa, H. Spatial-temporal analysis of built-up land development in landslide-prone areas: Disaster risk assessment. Calam. J. Disaster Technol. Eng. 2025, 2, 143–151. [Google Scholar] [CrossRef]
- Ullah, S.; Qiao, X.; Abbas, M. Addressing the impact of land use land cover changes on land surface temperature using machine learning algorithms. Sci. Rep. 2024, 14, 18746. [Google Scholar] [CrossRef] [PubMed]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 2021, 64, 103186. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Qureshi, S.; Haase, D.; Alavipanah, S.K. Automated built-up extraction index: A new technique for mapping surface built-up areas using LANDSAT 8 OLI imagery. Remote Sens. 2019, 11, 1966. [Google Scholar] [CrossRef]
- Waqar, M.M.; Mirza, J.F.; Mumtaz, R.; Hussain, E. Development of new indices for extraction of built-up area & bare soil from Landsat data. Open Access Sci. Rep. 2012, 1, 4. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Becker, S.J.; Daughtry, C.S.; Russ, A.L. Robust forest cover indices for multispectral images. Photogramm. Eng. Remote Sens. 2018, 84, 505–512. [Google Scholar] [CrossRef]
- Schindler, K. An overview and comparison of smooth labeling methods for land-cover classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4534–4545. [Google Scholar] [CrossRef]
- Akhter, M.; Ullah, F.; Mostarda, L.; Cacciagrano, D. A Deep Learning-Based RIDNet Approach for Enhanced Denoising of SAR Images. In Proceedings of the International Conference on Advanced Information Networking and Applications, Cham, Switzerland, 9–11 April 2025; Springer Nature: Cham, Switzerland, 2025; pp. 268–279. [Google Scholar]
- Ullah, F.; Kumar, K.; Rahim, T.; Khan, J. A new hybrid image denoising algorithm using adaptive and modified decision-based filters for enhanced image quality. Sci. Rep. 2025, 15, 8971. [Google Scholar] [CrossRef] [PubMed]
- Golilarz, N.A.; Gao, H.; Pirasteh, S.; Yazdi, M.; Zhou, J.; Fu, Y. Satellite multispectral and hyperspectral image de-noising with enhanced adaptive generalized gaussian distribution threshold in wavelet domain. Remote Sens. 2020, 13, 101. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Gao, W.; Wang, X.; Zeng, L. Bilateral regularized optimization model for edge-preserving image smoothing. Image Vis. Comput. 2024, 146, 105031. [Google Scholar] [CrossRef]
- Wang, W.; Li, W.; Zhang, C.; Zhang, W. Improving object-based land use/cover classification from medium resolution imagery by Markov chain geostatistical post classification. Land 2018, 7, 31. [Google Scholar] [CrossRef]
- Painam, R.K.; Manikandan, S. A comprehensive review of SAR image filtering techniques: Systematic survey and future directions. Arab. J. Geosci. 2020, 14, 37. [Google Scholar] [CrossRef]
- Lin, T.; Hong, H.; Wu, L. Improved BM3D for real image denoising. In Proceedings of the 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 20–22 October 2021; pp. 1–5. [Google Scholar]
- Yang, F.; Hu, Q.; Su, X. Hyperspectral image denoising based on hyper-Laplacian total variation in spectral gradient domain. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5507917. [Google Scholar] [CrossRef]
- Wang, P.; Tianm, S.; Chen, Y.; Ge, K.; Wang, X.; Wang, L. Hyperspectral image denoising based on deep and total variation priors. Remote Sens. 2024, 16, 2071. [Google Scholar] [CrossRef]
- Davydezenka, T.; Tahmasebi, P.; Carroll, M. Improving remote sensing classification: A deep-learning-assisted model. Comput. Geosci. 2022, 164, 105123. [Google Scholar] [CrossRef]
- González, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Pearson Education: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Otsu, N.A. threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Bangare, S.L.; Vidyavihar, S.; Dubai, A.A.; Patil, S. Reviewing Otsu’s method for image thresholding. Int. J. Appl. Eng. Res. 2015, 10, 21777–21783. [Google Scholar] [CrossRef]
- Yousefi, J. Image Binarization using Otsu Thresholding Algorithm. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2011. [Google Scholar]
- Che, L.; Li, S.; Liu, X. Improved surface water mapping using satellite remote sensing imagery based on optimization of the Otsu threshold and effective selection of remote-sensing water index. J. Hydrol. 2025, 654, 132771. [Google Scholar] [CrossRef]
- Karakus, P. Detection of Water Surface Using Canny and Otsu Threshold Methods with Machine Learning Algorithms on Google Earth Engine: A Case Study of Lake Van. Appl. Sci. 2025, 15, 2903. [Google Scholar] [CrossRef]
- Lawer, E.A. An evaluation of single and multi-date Landsat image classifications using random forest algorithm in a semi-arid savanna of Ghana, West Africa. Sci. Afr. 2024, 26, e02434. [Google Scholar] [CrossRef]
- Maloney, M.C.; Becker, S.J.; Griffin, A.W.H.; Lyon, S.L.; Lasko, K. Automated built-up infrastructure land cover extraction using index ensembles with machine learning, automated training data, and red band texture layers. Remote Sens. 2024, 16, 868. [Google Scholar] [CrossRef]
- Azedou, A.; Amine, A.; Kisekka, I.; Lahssini, S.; Bouziani, Y.; Moukrim, S. Enhancing Land Cover/Land Use (LCLU) classification through a comparative analysis of hyperparameters optimization approaches for deep neural network (DNN). Ecol. Inform. 2023, 78, 102333. [Google Scholar] [CrossRef]
- Becker, S.J.; Maloney, M.C.; Griffin, A.W.; Lasko, K.; Sussman, H.S. Bare ground classification using a spectral index ensemble and machine learning models optimized across 12 international study sites. Geocarto Int. 2025, 40, 2465452. [Google Scholar] [CrossRef]
- Adugna, T.; Xu, W.; Fan, J. Effect of using different amounts of multi-temporal data on the accuracy: A case of land cover mapping of parts of Africa using FengYun-3C data. Remote Sens. 2021, 13, 4461. [Google Scholar] [CrossRef]
- Silvey, S.; Liu, J. Sample size requirements for popular classification algorithms in tabular clinical data: Empirical study. J. Med. Internet Res. 2024, 26, e60231. [Google Scholar] [CrossRef]
- Pesaresi, M.; Schiavina, M.; Politis, P.; Freire, S.; Krasnodębska, K.; Uhl, J.H.; Kemper, T. Advances on the Global Human Settlement Layer by joint assessment of Earth Observation and population survey data. Int. J. Digit. Earth 2024, 17, 2390454. [Google Scholar] [CrossRef]
- Yardimci, O.; Ulusoy, I. Evaluation of Pre-Processing, Thresholding and Post-Processing Steps for Very Small Target Detection in Infrared Images. In Proceedings of the Automatic Target Recognition XXVI, Baltimore, MD, USA, 17–21 April 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9844, p. 984405. [Google Scholar]
- Kumar, A.; Tiwari, A.A. Comparative Study of Otsu Thresholding and K-means Algorithm of Image Segmentation. Int. J. Eng. Technol. Res. 2019, 9, 12–14. [Google Scholar] [CrossRef]
- Tu, T.N. Improving a New Global Thresholding Algorithm Based on Gray Average for Binaryizating Image. Int. J. Latest Eng. Sci. 2024, 7, 5. [Google Scholar]
- Zhang, Y.; Zhang, Z.; Xu, R.; Xiong, P. Adaptive Multi-Threshold Image Segmentation Using Neighborhood Minimum Gray Values for Enhanced 2D Histogram Construction. In Proceedings of the Fifth International Conference on Optical Imaging and Image Processing (ICOIP 2025), Shanghai, China, 11–13 July 2025; SPIE: Bellingham, WA, USA, 2025; Volume 13688, pp. 604–611. [Google Scholar]
- Roy, P.; Dutta, S.; Dey, N.; Dey, G.; Chakraborty, S.; Ray, R. Adaptive thresholding: A comparative study. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1182–1186. [Google Scholar]
- Niblack, W. An Introduction to Digital Image Processing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- OpenCV. Adaptive Thresholding. Available online: https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html (accessed on 12 December 2025).
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200; Zenodo: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. WorldCover Product User Manual V2.0; ESA WorldCover consortium: Paris, France, 2022; Available online: https://esa-worldcover.s3.eu-central-1.amazonaws.com/v200/2021/docs/WorldCover_PUM_V2.0.pdf (accessed on 22 January 2026).
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
- Chicco, D.; Tötsch, N.; Jurman, G. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min. 2021, 14, 13. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Matthews correlation coefficient (MCC) is more informative than Cohen’s Kappa and Brier score in binary classification assessment. IEEE Access 2021, 9, 78368–78381. [Google Scholar] [CrossRef]
- Lasko, K. Gap filling cloudy Sentinel-2 NDVI and NDWI pixels with multi-frequency denoised C-band and L-band Synthetic Aperture Radar (SAR), texture, and shallow learning techniques. Remote Sens. 2022, 14, 4221. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Wang, F.; Wang, S.; Qin, G.; Zhu, J. Shadow detection and reconstruction of high-resolution remote sensing images in mountainous and hilly environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1233–1243. [Google Scholar] [CrossRef]
- Liu, J.; Heiskanen, J.; Aynekulu, E.; Pellikka, P.K.E. Seasonal Variation of Land Cover Classification Accuracy of Landsat 8 Images in Burkina Faso. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 455–460. [Google Scholar] [CrossRef]
- Myers, D.T.; Jones, D.; Oviedo-Vargas, D.; Schmit, J.P.; Ficklin, D.L.; Zhang, X. Seasonal Variation in Land Cover Estimates Reveals Sensitivities and Opportunities for Environmental Models. Hydrol. Earth Syst. Sci. 2024, 28, 5295–5310. [Google Scholar] [CrossRef]
- Sezgin, M.; Sankur, B.L. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–168. [Google Scholar] [CrossRef]
- Zaman, E.A.K.; Ahmad, A.; Mohamed, A. Adaptive threshold optimisation for online feature selection using dynamic particle swarm optimisation in determining feature relevancy and redundancy. Appl. Soft Comput. 2024, 156, 111477. [Google Scholar] [CrossRef]
- Becker, S.J.; Maloney, M.C.; Griffin, A.W.H. A Multi-Biome Study of Tree Cover Detection Using the Forest Cover Index; ERDC/GRL TR-21-4; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2021. [Google Scholar]
- Feliciano-Cruz, L.I.; Becker, S.J.; Lasko, K.D.; Daughtry, C.S.; Russ, A.L. Forest Cover Index for Tree Cover Detection Using Landsat-7 Multispectral Imagery; ERDC/GRL TR-19-1; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2019. [Google Scholar]










| Name | Band Center and Width (nm) | Band Number | Resolution (m) |
|---|---|---|---|
| Blue | 492.4 (66) | 02 | 10 |
| Green | 559.8 (36) | 03 | 10 |
| Red | 664.6 (31) | 04 | 10 |
| Near-Infrared (NIR) | 832.8 (106) | 08 | 10 |
| Shortwave Infrared (SWIR) | 1613.7 (91) | 11 | 20 |
| Location | Granule ID | Date 1 | Date 2 | Date 3 | Date 4 | Date 5 |
|---|---|---|---|---|---|---|
| Alice Springs, Australia | T53SLU | 1 August 2021 | 6 August 2021 | 11 August 2021 | 16 August 2021 | 27 October 2021 |
| Paraty, Brazil | T23KNQ | 7 July 2021 | 10 July 2021 | 25 July 2021 | 19 August 2021 | 23 October 2021 |
| Lhasa, China | T46RCT | 17 January 2020 | 27 January 2020 | 16 February 2020 | 12 October 2020 | 2 November 2020 |
| Mykonos, Greece | T35SLB | 4 June 2021 | 11 June 2021 | 21 June 2021 | 1 July 2021 | 11 July 2021 |
| Port-au-Prince, Haiti | T18QYF | 2 February 2021 | 12 February 2021 | 27 February 2021 | 18 April 2021 | 5 May 2021 |
| Savannakhet, Laos | T48QVD | 9 January 2020 | 19 January 2020 | 9 March 2020 | 28 April 2020 | 14 November 2020 |
| Riga, Latvia | T35VLD | 6 June 2021 | 18 June 2021 | 21 June 2021 | 19 July 2021 | 26 July 2021 |
| Leiden, The Netherlands | T31UET | 5 May 2020 | 23 May 2020 | 30 May 2020 | 17 September 2020 | 22 September 2020 |
| Ta’izz, Yemen | T38PLA | 18 August 2021 | 23 August 2021 | 2 September 2021 | 1 December 2021 | 16 December 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Becker, S.J.; Wayant, N.M. Denoising of Binary Built-Up Maps Using Multi-Temporal Image Processing Thresholding. Land 2026, 15, 271. https://doi.org/10.3390/land15020271
Becker SJ, Wayant NM. Denoising of Binary Built-Up Maps Using Multi-Temporal Image Processing Thresholding. Land. 2026; 15(2):271. https://doi.org/10.3390/land15020271
Chicago/Turabian StyleBecker, Sarah J., and Nicole M. Wayant. 2026. "Denoising of Binary Built-Up Maps Using Multi-Temporal Image Processing Thresholding" Land 15, no. 2: 271. https://doi.org/10.3390/land15020271
APA StyleBecker, S. J., & Wayant, N. M. (2026). Denoising of Binary Built-Up Maps Using Multi-Temporal Image Processing Thresholding. Land, 15(2), 271. https://doi.org/10.3390/land15020271

