GeoAI for Land Use Observations, Analysis, and Forecasting
Author Contributions
Conflicts of Interest
List of Contributions
- Liu, X.; Shan, Y.; Ai, G.; Du, Z.; Shen, A.; Lei, N. A Scientific Investigation of the Shangfang Mountain Yunshui Cave in Beijing Based on LiDAR Technology. Land 2024, 13, 895. https://doi.org/10.3390/land13060895.
- Bol, T.T.; Randhir, T.O. Predicting Land Use and Land Cover Changes in the Chindwin River Watershed of Myanmar Using Multilayer Perceptron-Artificial Neural Networks. Land 2024, 13, 1160. https://doi.org/10.3390/land13081160.
- Rodrigues, J.; Dias, M.A.; Negri, R.; Hussain, S.M.; Casaca, W. A Robust Dual-Mode Machine Learning Framework for Classifying Deforestation Patterns in Amazon Native Lands. Land 2024, 13, 1427. https://doi.org/10.3390/land13091427.
- Hu, W.; Chen, T.; Lan, C.; Liu, S.; Yin, L. SkipResNet: Crop and Weed Recognition Based on the Improved ResNet. Land 2024, 13, 1585. https://doi.org/10.3390/land13101585.
- Hu, W.; Lan, C.; Chen, T.; Liu, S.; Yin, L.; Wang, L. Scene Classification of Remote Sensing Image Based on Multi-Path Reconfigurable Neural Network. Land 2024, 13, 1718. https://doi.org/10.3390/land13101718.
- Wang, R.; Lu, S.; Tian, J.; Yin, L.; Wang, L.; Chen, X.; Zheng, W. CGBi_YOLO: Lightweight Land Target Detection Network. Land 2024, 13, 2060. https://doi.org/10.3390/land13122060.
- Hu, W.; Jiang, X.; Tian, J.; Ye, S.; Liu, S. Land Target Detection Algorithm in Remote Sensing Images Based on Deep Learning. Land 2025, 14, 1047. https://doi.org/10.3390/land14051047.
- Vasconcelos, R.N.; Franca Rocha, W.J.S.; Costa, D.P.; Duverger, S.G.; Santana, M.M.M.d.; Cambui, E.C.B.; Ferreira-Ferreira, J.; Oliveira, M.; Barbosa, L.D.; Cordeiro, C.L. Fire Detection with Deep Learning: A Comprehensive Review. Land 2024, 13, 1696. https://doi.org/10.3390/land13101696.
- He, L.; Lei, Y.; Yang, Y.; Liu, B.; Li, Y.; Zhao, Y.; Tang, D. Intelligent Recommendation of Multi-Scale Response Strategies for Land Drought Events. Land 2025, 14, 42. https://doi.org/10.3390/land14010042.
References
- Janowicz, K.; Gao, S.; McKenzie, G.; Hu, Y.; Bhaduri, B. GeoAI: Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. Int. J. Geogr. Inf. Sci. 2020, 34, 625–636. [Google Scholar] [CrossRef]
- Li, W.; Hsu, C.-Y. GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography. ISPRS Int. J. Geo-Inf. 2022, 11, 385. [Google Scholar] [CrossRef]
- Lavallin, A.; Downs, J.A. Machine learning in geography–Past, present, and future. Geogr. Compass 2021, 15, e12563. [Google Scholar] [CrossRef]
- Khouya, A. L’intégration de l’intelligence artificielle en géographie: Nouvelles potentialités et défis persistants. Géomatique Et Gest. Des Territ. 2025, 2, 146–153. [Google Scholar] [CrossRef]
- Senocak, A.A.; Guner Goren, H. Forecasting the biomass-based energy potential using artificial intelligence and geographic information systems: A case study. Eng. Sci. Technol. Int. J. 2022, 26, 100992. [Google Scholar] [CrossRef]
- Di Stefano, F.; Chiappini, S.; Gorreja, A.; Balestra, M.; Pierdicca, R. Mobile 3D scan LiDAR: A literature review. Geomat. Nat. Hazards Risk 2021, 12, 2387–2429. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Li, K.; Liu, X. GeoAI for Land Use Observations, Analysis, and Forecasting. Land 2025, 14, 2058. https://doi.org/10.3390/land14102058
Zheng W, Li K, Liu X. GeoAI for Land Use Observations, Analysis, and Forecasting. Land. 2025; 14(10):2058. https://doi.org/10.3390/land14102058
Chicago/Turabian StyleZheng, Wenfeng, Kenan Li, and Xuan Liu. 2025. "GeoAI for Land Use Observations, Analysis, and Forecasting" Land 14, no. 10: 2058. https://doi.org/10.3390/land14102058
APA StyleZheng, W., Li, K., & Liu, X. (2025). GeoAI for Land Use Observations, Analysis, and Forecasting. Land, 14(10), 2058. https://doi.org/10.3390/land14102058