Impact of Global Changes on the Habitat in a Protected Area: A Twenty-Year Diachronic Analysis in Aspromonte National Park (Southern Italy)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Diachronic Analysis
2.3. Habitat Change Analysis
- -
- Persistence: the area of a specific category that remained unchanged between 2001 and 2023 (diagonal elements of the transition matrix);
- -
- Gross loss: area of the category in 2001 minus its persistence.
- -
- Gross gain: area of the category in 2023 minus its persistence.
- -
- Net change: the difference between total gains and total losses, indicating whether a category has expanded or contracted.
- -
- Transition areas: for each flow, the area (in hectares) that underwent a change was identified and reported.
2.4. Landscape Composition Change Analysis
3. Results
3.1. Analysis of Habitat Change
3.2. Analysis of Composition Metrics and Configuration of Individual Types
3.3. Analysis of Landscape-Level Diversity Metrics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Walther, G.R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2019–2024. [Google Scholar] [CrossRef]
- Cable, J.; Barber, I.; Boag, B.; Ellison, A.R.; Morgan, E.R.; Murray, K.; Booth, M.; Pascoe, E.L.; Sait, S.M.; Wilson, A.J. Global change, parasite transmission and disease control: Lessons from ecology. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160088. [Google Scholar] [CrossRef]
- Geldmann, J.; Coad, L.; Barnes, M.; Craigie, I.D.; Hockings, M.; Knights, K.; Leverington, F.; Cuadros, I.C.; Zamora, C.; Woodley, S.; et al. Changes in protected area management effectiveness over time: A global analysis. Biol. Conserv. 2015, 191, 692–699. [Google Scholar] [CrossRef]
- Gray, C.L.; Hill, S.L.; Newbold, T.; Hudson, L.N.; Borger, L.; Contu, S.; Hoskins, A.J.; Ferrier, S.; Purvis, A.; Scharlemann, J.P.W. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 2016, 7, 12306. [Google Scholar] [CrossRef]
- Green, J.M.H.; Larrosa, C.; Burgess, N.D.; Balmford, A.; Jonhston, A.; Mbilinyi, B.P.; Platts, P.J.; Coad, L. Deforestation in an Africa biodiversity hotspot: Extent, variation and the effectiveness of protected areas. Biol. Conserv. 2013, 164, 62–72. [Google Scholar] [CrossRef]
- Coad, L.; Campbell, A.; Miles, L.; Humphries, K. The Costs and Benefits of Protected Areas for Local Livelihoods: A Review of the Current Literature; UNEP World Conservation Monitoring Centre: Cambridge, UK, 2008. [Google Scholar]
- Butchart, S.H.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.; Almond, R.E.; Watson, R.; Baillie, J.M.; Bomhard, B.; Brown, C.; et al. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Geldmann, J.; Barnes, M.; Coad, L.; Craigie, I.D.; Hockings, M.; Burgess, N.D. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 2013, 161, 230–238. [Google Scholar] [CrossRef]
- Brooks, T.M.; Bakarr, M.I.; Boucher, T.; Da Fonseca, G.A.B.; Hilton-Taylor, C.; Hoekstra, J.M.; Moritz, T.; Olivier, S.; Parrish, J.; Pressey, R.L.; et al. Coverage provided by the global protected-area system: Is it enough? Bioscience 2004, 54, 1081–1091. [Google Scholar] [CrossRef]
- Angiolini, C.; Bonari, G.; Landi, M. Focal plant species and soil factors in Mediterranean coastal dunes: An undisclosed liaison? Estuar. Coast. Shelf Sci. 2018, 211, 248–258. [Google Scholar] [CrossRef]
- Luque, S.S. The challenge to manage the biological integrity of nature reserves: A landscape ecology perspective. Int. J. Remote Sens. 2000, 21, 2613–2643. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 9–16. [Google Scholar] [CrossRef]
- Carranza, M.L.; Frate, L.; Acosta, A.T.; Hoyos, L.; Ricotta, C.; Cabido, M. Measuring forest fragmentation using multitemporal remotely sensed data: Three decades of change in the dry Chaco. Eur. J. Remote Sens. 2014, 47, 793–804. [Google Scholar] [CrossRef]
- Mertes, C.M.; Schneider, A.; Sulla-Menashe, D.; Tatem, A.J.; Tan, B. Detecting change in urban areas at continental scales with MODIS data. Remote Sens. Environ. 2015, 158, 331–347. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Wardle, D.A. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Monogr. Ecol. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- De Vos, J.M.; Joppa, L.N.; Gittleman, J.L.; Stephens, P.R.; Pimm, S.L. Estimating the normal background rate of species extinction. Conserv. Biol. 2015, 29, 452–462. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.; De Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef]
- Barbati, A.; Corona, P.; Salvati, L.; Gasparella, L. Natural forest expansion into suburban countryside. Urban For. Urban Green. 2013, 12, 36–43. [Google Scholar] [CrossRef]
- Salvati, L.; Gitas, I.; Bajocco, S. Spatial determinants of land-use changes in an urban region (Attica, Greece) between 1987 and 2007. J. Land Use Sci. 2015, 10, 388–401. [Google Scholar] [CrossRef]
- Smiraglia, D.; Ceccarelli, T.; Bajocco, S.; Perini, L.; Salvati, L. Unraveling landscape complexity: Land use/land cover changes and landscape pattern dynamics (1954–2008) in contrasting peri-urban and agro-forest regions of northern Italy. Environ. Manag. 2015, 56, 916–932. [Google Scholar] [CrossRef]
- Sperandii, M.G.; Prisco, I.; Acosta, A.T.R. Hard times for Italian coastal dunes: Insights from a diachronic analysis based on random plots. Biodivers. Conserv. 2018, 27, 633–646. [Google Scholar] [CrossRef]
- Hédl, R.; Kopecký, M.; Komárek, J. Half a century of succession in a temperate oakwood: From species-rich community to mesic forest. Divers. Distrib. 2010, 16, 267–276. [Google Scholar] [CrossRef]
- Kopecký, M.; Hédl, R.; Szabó, P. Non-random extinctions dominate plant community changes in abandoned coppices. J. Appl. Ecol. 2013, 50, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Pignatti, E.; Pignatti, S. Plant Life of the Dolomites; Springer: Berlin/Heidelberg, Germany, 2014; Volume 550. [Google Scholar]
- Del Vecchio, S.; Prisco, I.; Acosta, A.T.; Stanisci, A. Changes in plant species composition of coastal dune habitats over a 20-year period. AoB Plants 2015, 7, plv018. [Google Scholar] [CrossRef]
- Gigante, D.; Attorre, F.; Venanzoni, R.; Acosta, A.T.R.; Agrillo, E.; Aleffi, M.; Zitti, S.; Alessi, N.; Allegrezza, M.; Angelini, P.; et al. A methodological protocol for Annex I Habitats monitoring: The contribution of Vegetation science. Plant Sociol. 2016, 53, 77–87. [Google Scholar] [CrossRef]
- Ren, C.; Chen, L.; Wang, Z.; Zhang, B.; Xi, Y.; Lu, C. Spatio–temporal changes of forests in northeast China: Insights from landsat images and geospatial analysis. Forests 2019, 10, 937. [Google Scholar] [CrossRef]
- Giles-Hansen, K.; Li, Q.; Wei, X. The Cumulative Effects of Forest Disturbance and Climate Variability on Streamflow in the Deadman River Watershed. Forests 2019, 10, 196. [Google Scholar] [CrossRef]
- Jaafar, W.S.W.M.; Maulud, K.N.A.; Kamarulzaman, A.M.M.; Raihan, A.; Sah, S.M.; Ahmad, A.; Saad, S.N.M.; Azmi, A.T.M.; Syukri, N.K.A.J.; Khan, W.R. The influence of forest degradation on land surface temperature—A case study of Perak and Kedah, Malaysia. Forests 2020, 11, 670. [Google Scholar] [CrossRef]
- Bogaert, J.; Ceulemans, R.; Salvador-Van Eysenrode, D. Decision tree algorithm for detection of spatial processes in landscape transformation. Environ. Manag. 2004, 33, 62–73. [Google Scholar] [CrossRef]
- Barima, Y.S.S. Dynamique, Fragmentation et Diversité Végétale des Paysages Forestiers en Milieux de Transition Forêt-Savane dans le Département de Tanda, Côte d’Ivoire. Doctoral Dissertation, Free University of Brussels, Brussles, Belgium, 2009. [Google Scholar]
- Soverel, N.O.; Coops, N.C.; White, J.C.; Wulder, M.A. Characterizing the forest fragmentation of Canada’s 259 national parks. Environ. Monit. Assess. 2010, 164, 481–499. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Roy, P.S. Forest fragmentation in the Himalaya: A central Himalayan case study. Int. J. Sustain. Dev. World Ecol. 2007, 14, 201–210. [Google Scholar] [CrossRef]
- Coops, N.C.; Wulder, M.A.; White, J.C. Identifying and describing forest disturbance and spatial pattern: Data selection issues. In Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and GIS Approaches; CRC Press: Boca Raton, FL, USA, 2006; p. 31. [Google Scholar]
- Ürker, O.; Günlü, A.; Ataol, M. Use of GUIDOS to analyze fragmentation features and test corridor creation for a fragmented forest ecosystem in Northern-Central Turkey. Austrian J. For. Sci. 2023, 140, 121–148. [Google Scholar]
- Solano, F.; Praticò, S.; Piovesan, G.; Chiarucci, A.; Argentieri, A.; Modica, G. Characterizing historical transformation trajectories of the forest landscape in Rome’s metropolitan area (Italy) for effective planning of sustainability goals. Land Degrad. Dev. 2021, 32, 4708–4726. [Google Scholar] [CrossRef]
- Bullo, S.; Scelsi, F.; Spampinato, G. La Vegetazione dell’Aspromonte (Studio Fitosocilogico); Laruffa Editore: Reggio Calabria, Italy, 2001. [Google Scholar]
- Spampinato, G.; Camerieri, P.; Caridi, D.; Crisafulli, A. Carta della Biodiversità Vegetale del Parco Nazionale dell’Aspromonte (Italia meridionale). Quad. Bot. Amb. Appl. 2008, 19, 3–36. [Google Scholar]
- Aramini, G.; Bernardo, L.; Spampinato, G. (Eds.) Carta Natura; Geografia degli Habitat; Monografia Calabria; Arti Grafiche Cardamone: Decollatura, Italy, 2023. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 5 December 2025).
- McGarigal, K.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps, Version 4.2; Computer Software Program Produced by the Authors at the University of Massachusetts: Amherst, MA, USA, 2015. Available online: https://www.fragstats.org (accessed on 12 December 2025).
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; Gen. Tech. Rep. PNW-GTR-351; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; 122p.
- Paudel, S.; Yuan, F. Assessing landscape changes and dynamics using patch analysis and GIS modeling. Int. J. Appl. Earth Obs. Geoinf. 2012, 16, 66–76. [Google Scholar] [CrossRef]
- Lamine, S.; Petropoulos, G.P.; Singh, S.K.; Szabó, S.; Bachari, N.E.I.; Srivastava, P.K.; Suman, S. Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS. Geocarto Int. 2018, 33, 862–878. [Google Scholar] [CrossRef]
- Singh, S.; Reddy, C.S.; Pasha, S.V.; Dutta, K.; Saranya, K.R.L.; Satish, K.V. Modeling the spatial dynamics of deforestation and fragmentation using Multi-Layer Perceptron neural network and landscape fragmentation tool. Ecol. Eng. 2017, 99, 543–551. [Google Scholar] [CrossRef]
- Roura-Pascual, N.; Pons, P.; Etienne, M.; Lambert, B. Transformation of a Rural Landscape in the Eastern Pyrenees between 1953 and 2000. Mt. Res. Dev. 2005, 25, 252–261. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Di Pasquale, G.; Mulligan, M.; Di Martino, P.; Rego, F.C. (Eds.) Recent Dynamics of the Mediterranean Vegetation and Landscape; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Vogiatzakis, I.N.; Pungetti, G.; Mannion, A.M. (Eds.) Mediterranean Island Landscapes: Natural and Cultural Approaches; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 9. [Google Scholar]
- Verburg, P.H.; van Berkel, D.B.; van Doorn, A.M.; van Eupen, M.; van den Heiligenberg, H.A. Trajectories of land use change in Europe: A model-based exploration of rural futures. Landsc. Ecol. 2010, 25, 217–232. [Google Scholar] [CrossRef]
- Malavasi, M.; Carranza, M.L.; Moravec, D.; Cutini, M. Reforestation dynamics after land abandonment: A trajectory analysis in Mediterranean mountain landscapes. Reg. Environ. Change 2018, 18, 2459–2469. [Google Scholar] [CrossRef]
- Ameztegui, A.; Morán-Ordóñez, A.; Márquez, A.; Blázquez-Casado, Á.; Pla, M.; Villero, M.B.; García, D.; Errea, M.P.; Coll, L. Forest expansion in mountain protected areas: Trends and consequences for the landscape. Landsc. Urban Plan. 2021, 216, 104240. [Google Scholar] [CrossRef]
- McGarigal, K.; McComb, W.C. Relationships between landscape structure and breeding birds in the Oregon Coast range. Ecol. Monogr. 1995, 65, 235–260. [Google Scholar] [CrossRef]
- Wieser, G.; Oberhuber, W.; Gruber, A. Effects of climate change at treeline: Lessons from space-for-time studies, manipulative experiments, and long-term observational records in the Central Austrian Alps. Forests 2019, 10, 508. [Google Scholar] [CrossRef]
- Bryn, A. Recent forest limit changes in south-east Norway: Effects of climate change or regrowth after abandoned utilisation? Nor. Geogr. Tidsskr.-Nor. J. Geogr. 2008, 62, 251–270. [Google Scholar] [CrossRef]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Geri, F.; Rocchini, D.; Chiarucci, A. Landscape metrics and topographical determinants of large-scale forest dynamics in a Mediterranean landscape. Landsc. Urban Plan. 2010, 95, 46–53. [Google Scholar] [CrossRef]
- Burrascano, S.; Chytrý, M.; Kuemmerle, T.; Giarrizzo, E.; Luyssaert, S.; Sabatini, F.M.; Blasi, C. Current European policies are unlikely to jointly foster carbon sequestration and protect biodiversity. Biol. Conserv. 2016, 201, 370–376. [Google Scholar] [CrossRef]
- Temperton, V.M.; Buchmann, N.; Buisson, E.; Durigan, G.; Kazmierczak, Ł.; Perring, M.P.; Overbeck, G.E.; de Sa Dechoum, M.; Veldman, J.W. Step back from the forest and step up to the Bonn Challenge: How a broad ecological perspective can promote successful landscape restoration. Restor. Ecol. 2019, 27, 705–719. [Google Scholar] [CrossRef]
- Vodka, Š.; Konvička, M.; Čížek, L. Habitat preferences of oak-feeding xylophagous beatles in a temperate woodland: Implications for forest history and management. J. Insect Conserv. 2009, 13, 553–562. [Google Scholar] [CrossRef]
- Garcia, J.; Moran-ordonez, A.; Garcia, J.T.; Calero-Riestra, M.; Alda, F.; Sanz, J.; Suarez-Seoane, S. Current landscape attributes and landscape stability in breeding grounds explain genetic differentiation in a long-distance migratory bird. Anim. Conserv. 2021, 24, 120–134. [Google Scholar] [CrossRef]
- Zhou, R.; Ci, X.; Hu, J.; Zhang, X.; Cao, G.; Xiao, J.; Liu, Z.; Li, L.; Thornhill, A.H.; Conran, J.G.; et al. Transitional Areas of Vegetation as Biodiversity Hotspots Evidenced by Multifaceted Biodiversity Analysis of a Dominant Group in Chinese Evergreen Broad-Leaved Forests. Ecol. Indic. 2023, 147, 110001. [Google Scholar] [CrossRef]
- Varela, E.; Pulido, F.; Moreno, G.; Zavala, M.Á. Targeted policy proposals for managing spontaneous forest expansion in the Mediterranean. J. Appl. Ecol. 2020, 57, 2373–2380. [Google Scholar] [CrossRef]
- Stella, J.C.; Rodríguez-González, P.M.; Dufour, S.; Bendix, J. Riparian vegetation research in Mediterranean-climate regions: Common patterns, ecological processes, and considerations for management. Hydrobiologia 2013, 719, 291–315. [Google Scholar] [CrossRef]
- Bombino, G.; Zema, D.A.; Denisi, P.; Lucas-Borja, M.E.; Labate, A.; Zimbone, S.M. Assessment of riparian vegetation characteristics in Mediterranean headwaters regulated by check dams using multivariate statistical techniques. Sci. Total Environ. 2019, 657, 597–607. [Google Scholar] [CrossRef]
- Richiardi, C.; Siniscalco, C.; Garbarino, M.; Adamo, M. Unravelling decades of habitat dynamics in protected areas: A hierarchical approach applied to the Gran Paradiso National Park (NW Italy). Environ. Monit. Assess. 2025, 197, 1216. [Google Scholar] [CrossRef] [PubMed]
- Gatti, R.C.; Iaria, J.; Moretti, G.; Amendola, V.; Cassola, F.M.; Cerretti, P.; Chiarucci, A.; Di Musciano, M.; Francesconi, L.; Frattaroli, A.R.; et al. EU2030 biodiversity strategy: Unveiling gaps in the coverage of ecoregions and threatened species within the strictly protected areas of Italy. J. Nat. Conserv. 2024, 79, 126621. [Google Scholar] [CrossRef]
- Assini, S.; Filipponi, F.; Zucca, F. Land cover changes in an abandoned agricultural land in the Northern Apennine (Italy) between 1954 and 2008: Spatio-temporal dynamics. Plant Biosyst.-Int. J. Deal. Asp. Plant Biol. 2015, 149, 807–817. [Google Scholar] [CrossRef]
- Malandra, F.; Vitali, A.; Urbinati, C.; Garbarino, M. 70 years of land use/land cover changes in the Apennines (Italy): A meta-analysis. Forests 2018, 9, 551. [Google Scholar] [CrossRef]
- Kavgacı, A.; Balpınar, N.; Öner, H.H.; Arslan, M.; Bonari, G.; Chytrý, M.; Čarni, A. Classification of forest and shrubland vegetation in Mediterranean Turkey. Appl. Veg. Sci. 2021, 24, 12589. [Google Scholar] [CrossRef]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogan, M.; Radeloff, V.C.; Keuler, N.S.; Prishchepov, A.V.; Kruhlov, I.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Kozak, J.; Ziółkowska, E.; Vogt, P.; Dobosz, M.; Kaim, D.; Kolecka, N.; Ostafin, K. Forest-cover increase does not trigger forest-fragmentation decrease: Case Study from the Polish Carpathians. Sustainability 2018, 10, 1472. [Google Scholar] [CrossRef]
- Neel, M.C.; McGarigal, K.; Cushman, S.A. Behavior of class-level landscape metrics across gradients of class aggregation and area. Landsc. Ecol. 2004, 19, 435–455. [Google Scholar] [CrossRef]
- Saura, S.; Bodin, Ö.; Fortin, M.-J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 2014, 51, 171–182. [Google Scholar] [CrossRef]
- Rosati, L.; Fipaldini, M.; Marignani, M.; Blasi, C. Effects of fragmentation on vascular plant biodiversity in a Mediterranean forest archipelago. Plant Biosyst. 2010, 144, 38–46. [Google Scholar] [CrossRef]
- Scolastri, A.; Bricca, A.; Cancellieri, L.; Cutini, M. Understory functional response to different management in the Mediterranean beech forest (central Apennine, Italy). For. Ecol. Manag. 2017, 400, 665–676. [Google Scholar] [CrossRef]
- Herzog, F.; Lausch, A.; Müller, E.; Thulke, H.H.; Steinhardt, U.T.A.; Lehmann, S. Landscape metrics for assessment of landscape destruction and rehabilitation. Environ. Manag. 2001, 27, 91–107. [Google Scholar] [CrossRef]
- Rincón, V.; Velázquez, J.; Pascual, Á.; Herráez, F.; Gómez, I.; Gutiérrez, J.; Sánchez, B.; Hernando, A.; Santamaría, T.; Sánchez-Mata, D. Connectivity of Natura 2000 potential natural riparian habitats under climate change in the Northwest Iberian Peninsula: Implications for their conservation. Biodivers. Conserv. 2022, 31, 585–612. [Google Scholar] [CrossRef]
- Morabito, A.; Velázquez, J.; Caridi, D.; Spampinato, G. Analysis of the Connectivity and Biodiversity of the Natura 2000 Network, a Case Study in Calabria (Southern Italy). Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5149311 (accessed on 5 December 2025).
- Mckergow, L.A.; Matheson, F.E.; Quinn, J.M. Riparian management: A restoration tool for New Zealand streams. Ecol. Manag. Restor. 2016, 17, 218–227. [Google Scholar] [CrossRef]
- Bombino, G.; Barbaro, G.; Pérez-Cutillas, P.; D’Agostino, D.; Denisi, P.; Foti, G.; Zimbone, S.M. Use of Logs Downed by Wildfires as Erosion Barriers to Encourage Forest Auto-Regeneration: A Case Study in Calabria, Italy. Water 2023, 15, 2378. [Google Scholar] [CrossRef]
- Bombino, G.; D’Agostino, D.; Marziliano, P.A.; Pérez Cutillas, P.; Praticò, S.; Proto, A.R.; Manti, L.M.; Lofaro, G.; Zimbone, S.M. A Nature-Based Approach Using Felled Burnt Logs to Enhance Forest Recovery Post-Fire and Reduce Erosion Phenomena in the Mediterranean Area. Land 2024, 13, 236. [Google Scholar] [CrossRef]
- Gülçin, D.; Deni, B. Remote sensing and GIS-based forest fire risk zone mapping: The case of Manisa Turkey. Turk. J. For. 2020, 21, 15–24. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Rupp, T.S.; Olson, M.; Verbyla, D. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests. Landsc. Ecol. 2011, 26, 487–500. [Google Scholar] [CrossRef]
- Lanner, R.M. Seed dispersal in Pinus. In Ecology and Biogeography of Pinus; Cambridge University Press: New York, NY, USA, 1998; pp. 281–295. [Google Scholar]
- Kavgacı, A.; Örtel, E.; Torres, E.; Safford, H. Early postfire vegetation recovery of Pinus brutia forests: Effects of fire severity, prefire stand age, and aspect. Turk. J. Agric. For. 2016, 40, 723–736. [Google Scholar] [CrossRef]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin? A review. Int. J. Wildland Fire 2008, 17, 713–723. [Google Scholar] [CrossRef]
- Keleş, E.S.; Kavgacı, A. Anadolu karaçamı (Pinus nigra J.F. Arnold subsp. pallasiana Lamb. Holmboe) Ormanlarında Yangın Sonrası Vejetasyon Dinamiği (Post-Fire Vegetation Dynamics in Anatolian Black Pine (Pinus nigra J.F. Arnold subsp. pallasiana Lamb. Holmboe) Forests). Ph.D. Thesis, Karabük University, Karabük, Turkey, 2022. [Google Scholar]
- Ferreira-Leite, F.; Bento-Gonçalves, A.; Vieira, A.; Nunes, A.; Lourenço, L. Incidence and recurrence of large forest fires in mainland Portugal. Nat. Hazards 2016, 84, 1035–1053. [Google Scholar] [CrossRef]
- Peters, D.P.C.; Goslee, S.C. Landscape Diversity. In Encyclopedia of Biodiversity; Academic Press: Cambridge, MA, USA, 2001; Volume 3, pp. 645–658. [Google Scholar]
- Fahrig, L. Ecological Responses to Habitat Fragmentation Per Se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Chelaru, D.; Oiste, A.; Mihai, F. Quantifying the changes in landscape configuration using open source GIS. Case study: Bistritasubcarpathian valley. In SGEM Conference Proceedings, Proceedings of the 14th International Multidisciplinary Scientific Geoconference on Ecology, Economics, Education and Legislation SGEM 2014, Albena, Bulgaria, 17–26 June 2014; SGEM World Science Publishing House: Vienna, Austria, 2014; Volume 1, pp. 557–565. [Google Scholar]
- Sánchez-Reyes, U.J.; Niño-Maldonado, S.; Barrientos-Lozano, L.; Treviño-Carreón, J. Assessment of land use-cover changes and successional stages of vegetation in the natural protected area Altas Cumbres, Northeastern Mexico, using Landsat satellite imagery. Remote Sens. 2017, 9, 712. [Google Scholar] [CrossRef]
- Rimal, B.; Zhang, L.; Keshtkar, H.; Haack, B.N.; Rijal, S.; Zhang, P. Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. ISPRS Int. J. Geo-Inf. 2018, 7, 154. [Google Scholar] [CrossRef]
- Chouvardas, D.; Karatassiou, M.; Tsioras, P.; Tsividis, I.; Palaiochorinos, S. Spatiotemporal changes (1945–2020) in a grazed landscape of northern Greece, in relation to socioeconomic changes. Land 2022, 11, 1987. [Google Scholar] [CrossRef]
- Xofis, P.; Spiliotis, J.A.; Chatzigiovanakis, S.; Chrysomalidou, A.S. Long-term monitoring of vegetation dynamics in the Rhodopi Mountain Range National Park-Greece. Forests 2022, 13, 377. [Google Scholar] [CrossRef]
- Kubacka, M.; Żywica, P.; Subirós, J.V.; Bródka, S.; Macias, A. How do the surrounding areas of national parks work in the context of landscape fragmentation? A case study of 159 protected areas selected in 11 EU countries. Land Use Policy 2022, 113, 105910. [Google Scholar] [CrossRef]
- Parracciani, C.; Gigante, D.; Mutanga, O.; Bonafoni, S.; Vizzari, M. Land cover changes in grassland landscapes: Combining enhanced Landsat data composition, LandTrendr, and machine learning classification in google earth engine with MLP-ANN scenario forecasting. GIScience Remote Sens. 2024, 61, 2302221. [Google Scholar] [CrossRef]
- Piquer-Rodríguez, M.; Torella, S.; Gavier-Pizarro, G.; Volante, J.; Somma, D.; Ginzburg, R.; Kuemmerle, T. Effects of past and future land conversions on forest connectivity in the Argentine Chaco. Landsc. Ecol. 2015, 30, 817–833. [Google Scholar] [CrossRef]
- Carranza, M.L.; Hoyos, L.; Frate, L.; Acosta, A.T.; Cabido, M. Measuring forest fragmentation using multitemporal forest cover maps: Forest loss and spatial pattern analysis in the Gran Chaco, central Argentina. Landsc. Urban Plan. 2015, 143, 238–247. [Google Scholar] [CrossRef]









| Metrics | Units | Value Range | Description |
|---|---|---|---|
| Patch types | - | - | Discrete, contiguous polygonal units representing a specific habitat type according to the ISPRA/CORINE Biotopes classification system |
| Number of patches (NP) | number | NP ≥ 1 | Total number of patch types |
| Mean class area (AREA_MN) | ha | MN ≥ 0 | Average area size of patches type |
| Percentage of landscape (PLAND) | % | 0 < land ≤ 100 | Percentage of a specific patch type in proportion to the total area. |
| Patch Density (PD) | Number of patch per 100 hectares | PD > 0 | Number of patch types in 100 hectares. |
| Landscape Patch Index (LPI) | % | 0 < LPI ≤ 100 | Percentage of landscape occupied by the single largest patch types. |
| Landscape Shape Index (LSI) | none | LSI ≥ 1 | Quantifies landscape complexity by comparing the actual total edge length to the theoretical minimum edge length for the same area. |
| Metrics | Value Range | Description |
|---|---|---|
| Patch Richness (PR) | PR ≥ 1 | Total number of different patch types within the landscape boundary. This is a measure of the landscape’s composition. |
| Patch Richness Density | PRD > 0 | Standardizes wealth on an area basis, facilitating comparison between different landscapes. |
| Shannon’s Diversity Index (SHDI) | SHDI ≥ 0 | Quantifies landscape patch diversity by considering both landscape patch richness (PR) and landscape patch evenness (relative abundance of each patch type). |
| Simpson’s Diversity Index (SIDI) | 0 ≤ SIDI < 1 | Measures diversity by calculating the probability that two individuals randomly chosen from a sample will belong to the same patch type; the index ranges from 0 (no diversity) to 1 (infinite diversity), with higher values indicating greater patch types richness and evenness. |
| Shannon’s Evenness Index (SHEI) | 0≤ SHEI < 1 | Metric of area distribution among patch types. It depicts the ratio between the observed Shannon diversity index and the maximum possible diversity for a given patch richness (PR). The metric ranges from 0 to 1, with a value of 1 indicating perfect uniformity, i.e., an even distribution of the landscape area among all patch types. |
| Simpson’s Evenness Index (SIEI) | 0 ≤ SIEI < 1 | Standardized metric of the uniformity of area distribution among different patch types, based on the Simpson diversity index. It quantifies the relative abundance of habitat classes. |
| Modified Simpson’s Evenness Index (MSIEI) | 0 ≤ MSIEI < 1 | This metric evaluates the uniformity of area distribution among patch types and relative abundance. Equals minus the logarithm of the sum, across all patch types, of the proportional abundance of each patch type squared, divided by the logarithm of the number of patch types. |
| Modified Simpson’s Diversity Index (MSIDI) | MSIDI ≥ 0 | Convert Simpson’s probability into logarithmic form to quantify the richness and uniformity of landscape composition. |
| Park Zones | No Change (%) | Habitat Degradation (%) | Habitat Dynamic Evolution (%) | |
|---|---|---|---|---|
| Ds | Special Zones | 0.5 | 0.1 | 0.1 |
| D | Economic and Social Promotion Areas | 3.8 | 0.8 | 1.2 |
| Cs | Special Zones | 2.1 | 0.2 | 0.2 |
| C | Partial Reserve | 19.9 | 3.6 | 5.8 |
| A | Strict Reserves | 12.7 | 1.5 | 1.1 |
| B | General Oriented Reserves | 36.0 | 2.5 | 4.5 |
| Up | Unprotected zone | 2.0 | 0.5 | 0.7 |
| Total % | 77.2 | 9.3 | 13.6 | |
| Habitat Code | PLAND | NP | PD | LPI | LSI | AREA_MN | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2001 | 2023 | 2001 | 2023 | 2001 | 2023 | 2001 | 2023 | 2001 | 2023 | 2001 | 2023 | |
| 41.18 | 22.8 | 23.49 | 153 | 184 | 0.237 | 0.2851 | 16.3037 | 16.781 | 24.4071 | 22.8871 | 96.1862 | 82.3971 |
| 41.9 | 2.6 | 2.67 | 119 | 138 | 0.1844 | 0.2138 | 1.1007 | 1.1206 | 17.4091 | 15.9495 | 13.9139 | 12.5086 |
| 45.32 | 20.1 | 22.02 | 291 | 374 | 0.4508 | 0.5794 | 3.192 | 3.5771 | 37.8188 | 35.5891 | 44.6205 | 38.0081 |
| 44.513 | 0.3 | 0.37 | 106 | 132 | 0.1642 | 0.2045 | 0.0295 | 0.0582 | 32.1269 | 36.0000 | 1.6908 | 1.7902 |
| 44.61 | 0.1 | 0.10 | 39 | 57 | 0.0604 | 0.0883 | 0.0078 | 0.0224 | 15.8871 | 18.2125 | 0.971 | 1.1212 |
| 44.81 | 0.0 | 0.30 | 6 | 17 | 0.0093 | 0.0263 | 0.0052 | 0.1636 | 4.5313 | 10.7419 | 1.69 | 11.3865 |
| 41.4 | 0.3 | 1.45 | 17 | 186 | 0.0263 | 0.2882 | 0.1506 | 0.1141 | 11.0749 | 22.9984 | 10.4688 | 5.0232 |
| 41.732 | 0.8 | 0.19 | 147 | 4 | 0.2277 | 0.0062 | 0.066 | 0.1904 | 20.4732 | 4.0848 | 3.4118 | 31.1325 |
| 45.21 | 0.1 | 0.02 | 3 | 8 | 0.0046 | 0.0124 | 0.1458 | 0.0073 | 4.5663 | 5.4769 | 31.85 | 1.3025 |
| 41.7512 | 1.4 | 1.63 | 48 | 44 | 0.0744 | 0.0682 | 0.374 | 0.5411 | 12.9624 | 11.6312 | 19.4348 | 23.8423 |
| 42.65 | 3.5 | 2.44 | 57 | 90 | 0.0883 | 0.1394 | 2.0982 | 1.443 | 17.8683 | 17.6587 | 39.4998 | 17.5114 |
| 42.15 | 0.2 | 0.20 | 8 | 8 | 0.0124 | 0.0124 | 0.1189 | 0.1189 | 5.4323 | 5.4174 | 16.3613 | 16.425 |
| 41.7513 | 0.2 | 0.13 | 14 | 11 | 0.0217 | 0.017 | 0.0377 | 0.0344 | 6.9725 | 6.5815 | 8.4114 | 7.6545 |
| Date | PR | PRD | SHDI | SIDI | MSIDI | SHEI |
|---|---|---|---|---|---|---|
| 2001 | 42 | 0.07 | 2.53 | 0.88 | 2.11 | 0.68 |
| 2023 | 54 | 0.08 | 2.56 | 0.87 | 2.05 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Morabito, A.; Caridi, D.; Spampinato, G. Impact of Global Changes on the Habitat in a Protected Area: A Twenty-Year Diachronic Analysis in Aspromonte National Park (Southern Italy). Land 2026, 15, 235. https://doi.org/10.3390/land15020235
Morabito A, Caridi D, Spampinato G. Impact of Global Changes on the Habitat in a Protected Area: A Twenty-Year Diachronic Analysis in Aspromonte National Park (Southern Italy). Land. 2026; 15(2):235. https://doi.org/10.3390/land15020235
Chicago/Turabian StyleMorabito, Antonio, Domenico Caridi, and Giovanni Spampinato. 2026. "Impact of Global Changes on the Habitat in a Protected Area: A Twenty-Year Diachronic Analysis in Aspromonte National Park (Southern Italy)" Land 15, no. 2: 235. https://doi.org/10.3390/land15020235
APA StyleMorabito, A., Caridi, D., & Spampinato, G. (2026). Impact of Global Changes on the Habitat in a Protected Area: A Twenty-Year Diachronic Analysis in Aspromonte National Park (Southern Italy). Land, 15(2), 235. https://doi.org/10.3390/land15020235

