Sustainable Management of Willow Forest Landscapes: A Review of Ecosystem Functions and Conservation Strategies
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Bibliometric Review: Synthesis of the Literature
3.2. Willow Species Cited in Forest Management Research
3.3. Issues Addressed in Published Articles Concerning Willow Forest Management
3.4. Biomass Production of Willow Short-Rotation Forests and Management Actions Concerning Willow
4. Discussion
4.1. A Systematic and Bibliometric Synthesis of Global Research
4.2. Willow Species Cited in Forest Management Research
4.3. Issues Addressed in Published Articles Concerning Willow Forest Management
4.3.1. Geographical Distribution of Research
4.3.2. Main Research Themes
4.3.3. Emerging Research Directions
4.4. Biomass Production of Willow Short-Rotation Forests and Management Actions Concerning Willow
5. Conclusions
- Diversity and versatility
- 2.
- Ecosystem services
- 3.
- Management practices
- 4.
- Restoration and bioenergy potential
- 5.
- Emerging challenges
- Diversity and adaptability
- 2.
- Ecosystem services and multifunctionality
- 3.
- Management practices and productivity
6. Emerging Challenges
- 1.
- Policy Guidance and Research Priorities
Author Contributions
Funding
Conflicts of Interest
References
- Bressler, A.; Vidon, P.; Hirsch, P.; Volk, T. Valuation of ecosystem services of commercial shrub willow (Salix spp.) woody biomass crops. Environ. Monit. Assess. 2017, 189, 137. [Google Scholar] [CrossRef]
- Styles, D.; Börjesson, P.; d’Hertefeldt, T.; Birkhofer, K.; Dauber, J.; Adams, P.; Rosenqvist, H. Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment. Ambio 2016, 45, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.J.; Dickens, J.; Hobbs, N.T.; Christensen, L.; Landrum, L. Hydrologic, geomorphic and climatic processes controlling willow establishment in a montane ecosystem. Hydrol. Process. Int. J. 2006, 20, 1845–1864. [Google Scholar] [CrossRef]
- Graziano, M.P.; Deguire, A.K.; Surasinghe, T.D. Riparian buffers as a critical landscape feature: Insights for riverscape conservation and policy renovations. Diversity 2022, 14, 172. [Google Scholar] [CrossRef]
- Birla, D.; Yadav, S.L.; Gajanand, M.; Patel, R.A.; Sanodiya, P. Agronomic techniques to improve environmental restoration and climatic resilience in the agroforestry system. In Agroforestry Solutions for Climate Change and Environmental Restoration; Springer Nature: Singapore, 2024; pp. 437–462. [Google Scholar]
- Chenyang, L.; Currie, A.; Darrin, H.; Rosenberg, N. Farming with trees; reforming US farm policy to expand agroforestry and mitigate climate change. Ecol. LQ 2021, 48, 1. [Google Scholar]
- Xu, X.; Mola-Yudego, B. Where and when are plantations established? Land-use replacement patterns of fast-growing plantations on agricultural land. Biomass Bioenergy 2021, 144, 105921. [Google Scholar] [CrossRef]
- Dauber, J.; Brown, C.; Fernando, A.L.; Finnan, J.; Krasuska, E.; Ponitka, J.; Styles, D.; Thrän, D.; van Groenigen, K.J.; Weih, M. Bioenergy from “surplus” land: Environmental and socio-economic implications. BioRisk 2012, 7, 5–50. [Google Scholar] [CrossRef]
- Saez de Bikuña, K.; Hauschild, M.Z.; Pilegaard, K.; Ibrom, A. Environmental performance of gasified willow from different lands including land-use changes. GCB Bioenergy 2017, 9, 756–769. [Google Scholar] [CrossRef]
- Raatikainen, K.J.; Barron, E.S. Current agri-environmental policies dismiss varied perceptions and discourses on management of traditional rural biotopes. Land Use Policy 2017, 69, 564–576. [Google Scholar] [CrossRef]
- Nolet, B.A.; Hoekstra, A.; Ottenheim, M.M. Selective foraging on woody species by the beaver Castor fiber, and its impact on a riparian willow forest. Biol. Conserv. 1994, 70, 117–128. [Google Scholar] [CrossRef]
- Campbell, S.P.; Frair, J.L.; Gibbs, J.P.; Volk, T.A. Use of short-rotation coppice willow crops by birds and small mammals in central New York. Biomass Bioenergy 2012, 47, 342–353. [Google Scholar] [CrossRef]
- Williams, M.A.; Feest, A. The Effect of Willow Short Rotation Coppice Cultivation on the Biodiversity Quality of Ground-Layer Invertebrates. Agric. Sci. 2022, 13, 378–392. [Google Scholar] [CrossRef]
- Dincă, L.; Achim, F. The management of forests situated on fields susceptible to landslides and erosion from the Southern Carpathians. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2019, 19, 183–188. [Google Scholar]
- Anstead, L.; Boar, R.R. Willow spiling: Review of streambank stabilisation projects in the UK. Freshw. Rev. 2010, 3, 33–47. [Google Scholar] [CrossRef]
- Börjesson, P. Environmental effects of energy crop cultivation in Sweden—I: Identification and quantification. Biomass Bioenergy 1999, 16, 137–154. [Google Scholar] [CrossRef]
- Perttu, K.L.; Kowalik, P.J. Salix vegetation filters for purification of waters and soils. Biomass Bioenergy 1997, 12, 9–19. [Google Scholar] [CrossRef]
- Simon, L.; Uri, Z.; Vigh, S.; Oláh, K.I.; Makádi, M.; Vincze, G. Phytoextraction of potentially toxic elements from wastewater solids and willow ash–Experiences with energy willow (Salix triandra × S. viminalis‘Inger’). In Bioenergy Crops; CRC Press: Boca Raton, FL, USA, 2022; pp. 227–245. [Google Scholar]
- Skłodowski, M.; Kiedrzyńska, E.; Kiedrzyński, M.; Urbaniak, M.; Zielińska, K.M.; Kurowski, J.K.; Zalewski, M. The role of riparian willows in phosphorus accumulation and PCB control for lotic water quality improvement. Ecol. Eng. 2014, 70, 1–10. [Google Scholar] [CrossRef]
- Drzewiecka, K.; Kaźmierczak, Z.; Woźniak, M.; Rybak, M. The Effect of Salinity on Heavy Metal Tolerance in Two Energy Willow Varieties. Plants 2025, 14, 1747. [Google Scholar] [CrossRef]
- Saletnik, B.; Puchalski, C. Suitability of biochar and biomass ash in basket willow (Salix viminalis L.) cultivation. Agronomy 2019, 9, 577. [Google Scholar] [CrossRef]
- Rasa, K.; Heikkinen, J.; Hannula, M.; Arstila, K.; Kulju, S.; Hyväluoma, J. How and why does willow biochar increase a clay soil water retention capacity? Biomass Bioenergy 2018, 119, 346–353. [Google Scholar] [CrossRef]
- Forsström, E. Global Warming Potential of Willow Biochar as a Carbon Sink in Finland. 2019. Available online: https://urn.fi/URN:NBN:fi-fe2019110436567 (accessed on 18 July 2025).
- Hangs, R.D.; Ahmed, H.P.; Schoenau, J.J. Influence of willow biochar amendment on soil nitrogen availability and greenhouse gas production in two fertilized temperate prairie soils. BioEnergy Res. 2016, 9, 157–171. [Google Scholar] [CrossRef]
- Fletcher, A.J.; Smith, M.A.; Heinemeyer, A.; Lord, R.; Ennis, C.J.; Hodgson, E.M.; Farrar, K. Production factors controlling the physical characteristics of biochar derived from phytoremediation willow for agricultural applications. BioEnergy Res. 2014, 7, 371–380. [Google Scholar] [CrossRef]
- Woo, D.K. Unraveling the potential of willow afforestation for long-term soil organic carbon sequestration under future climate and acclimation pathways. For. Ecol. Manag. 2025, 593, 122843. [Google Scholar] [CrossRef]
- Hiltner, U.; Huth, A.; Hérault, B.; Holtmann, A.; Bräuning, A.; Fischer, R. Climate change alters the ability of neotropical forests to provide timber and sequester carbon. For. Ecol. Manag. 2021, 492, 119166. [Google Scholar] [CrossRef]
- Kruhlov, I.; Thom, D.; Chaskovskyy, O.; Keeton, W.S.; Scheller, R.M. Future forest landscapes of the Carpathians: Vegetation and carbon dynamics under climate change. Reg. Environ. Change 2018, 18, 1555–1567. [Google Scholar] [CrossRef]
- Searle, E.B.; Chen, H.Y.H. Temporal declines in tree longevity associated with faster lifetime growth rates in boreal forests. Environ. Res. Lett. 2018, 13, 125003. [Google Scholar] [CrossRef]
- Blattert, C.; Mönkkönen, M.; Burgas, D.; Di Fulvio, F.; Toraño Caicoya, A.; Vergarechea, M.; Klein, J.; Hartikainen, M.; Antón-Fernández, C.; Astrup, R.; et al. Climate targets in European timber-producing countries conflict with goals on forest ecosystem services and biodiversity. Commun. Earth Environ. 2023, 4, 119. [Google Scholar] [CrossRef]
- Tudose, N.C.; Cremades, R.; Broekman, A.; Sanchez-Plaza, A.; Mitter, H.; Marin, M. Mainstreaming the nexus approach in climate services will enable coherent local and regional climate policies. Adv. Clim. Change Res. 2021, 12, 752–755. [Google Scholar] [CrossRef]
- Tudose, N.C.; Cheval, S.; Ungurean, C.; Broekman, A.; Sanchez-Plaza, A.; Cremades, R.; Mitter, H.; Kropf, B.; Davidescu, Ș.O.; Dincă, L.; et al. Climate services for sustainable resource management: The water-energy-land nexus in the Tarlung river basin (Romania). Land Use Policy 2022, 119, 106221. [Google Scholar] [CrossRef]
- Tudose, N.C.; Marin, M.; Cheval, S.; Mitter, H.; Broekman, A.; Sanchez-Plaza, A.; Ungurean, C.; Davidescu, S. Challenges and opportunities of knowledge co-creation for the water-energy-land nexus. Clim. Serv. 2023, 30, 100340. [Google Scholar] [CrossRef]
- Budeanu, M.; Şofletea, N.; Petriţan, I.C. Among-population variation in quality traits in two Romanian provenance trials with Picea abies L. Balt. For. 2014, 20, 37–47. [Google Scholar]
- Apostol, E.N.; Stuparu, E.; Scarlatescu, V.; Budeanu, M. Testing Hungarian oak (Quercus frainetto Ten.) provenances in Romania. iForest 2020, 13, 9–15. [Google Scholar] [CrossRef]
- Besliu, E.; Curtu, A.L.; Apostol, E.N.; Budeanu, M. Using adapted and productive European beech (Fagus sylvatica L.) provenances as future solutions for sustainable forest management in Romania. Land 2024, 13, 183. [Google Scholar] [CrossRef]
- Budeanu, M.; Besliu, E.; Pepelea, D. Testing the radial increment and climate–growth relationship between Swiss stone pine European provenances in the Romanian Carpathians. Forests 2025, 16, 391. [Google Scholar] [CrossRef]
- Filat, M.; Benea, V.I.; Nicolae, C.; Roşu, C.; Daia, M.L.; Neţoiu, C.; Chira, D. Poplars, Willows and Other Forest Species Cultivation in Floodable Danube; Editura Silvica: Bucharest, Romania, 2009; (In Romanian). Available online: https://editurasilvica.ro/produs/cultura-plopilor-a-salciilor-si-a-altor-specii-forestiere-in-zona-inundabila-a-dunarii/ (accessed on 1 August 2025).
- Santucci, S.; Eisenbies, M.; Volk, T. Yield and Survival of 19 Cultivars of Willow (Salix spp.) Biomass Crops over Eight Rotations. Forests 2024, 15, 2041. [Google Scholar] [CrossRef]
- Zalesny, R.J.; Rogers, E.R. Activities Related to the Cultivation and Utilization of Poplars, Willows, and Other Fast-Growing Trees in the United States, 2020–2023; US Rep. to IPC/UN FAO; Forest Service, U.S. Department of Agriculture: Washington, DC, USA, 2024. [Google Scholar]
- Lin, C.R.; Tsai, S.H.L.; Wang, C.; Lee, C.L.; Hung, S.W.; Ting, Y.T.; Hung, Y.C. Willow bark (Salix spp.) used for pain relief in arthritis: A meta-analysis of randomized controlled trials. Life 2023, 13, 2058. [Google Scholar] [CrossRef]
- Curtasu, M.V.; Nørskov, N.P. Quantitative distribution of flavan-3-ols, procyanidins, flavonols, flavanone and salicylic acid in five varieties of organic winter dormant Salix spp. by LC-MS/MS. Heliyon 2024, 10, e12345. [Google Scholar] [CrossRef]
- Fehrenz, S.; Athmann, M.; Gemeinholzer, B.; Pecenka, R.; Silbermann, S.; Klussmann, H. SALIX–Breeding Willows with Specific Material and Growth Characteristics for Textile Timber Construction and as a Source of Salicylates. In Design Modelling Symposium Berlin; Springer: Berlin/Heidelberg, Germany, 2024; pp. 307–319. [Google Scholar]
- Akbari, S.; Aramideh, S. Effect of salicylic acid isolated from three native willow species in combination with Bacillus thuringiensis B. on the oak leaf roller, Tortrix viridana L. For. Res. Dev. 2024, 10, 395–409. [Google Scholar]
- Li, X.; Guo, L.; Sun, T.; Yu, K.; Zhang, J.; Ruan, Y. Salicylic acid provides resistance to cadmium toxicity and drought stress in Salix matsudana Koidz. Chemoecology 2025, 35, 29–46. [Google Scholar] [CrossRef]
- Urošević, J.; Stanković, D.; Jokanović, D.; Trivan, G.; Rodzkin, A.; Jović, Đ.; Jovanović, F. Phytoremediation potential of different genotypes of Salix alba and S. viminalis. Plants 2024, 13, 735. [Google Scholar] [CrossRef]
- Borz, S.A.; Papandrea, S.; Zoli, M.; Bacenetti, J.; Proto, A.R. Willow short rotation coppice. Energy and environmental assessment. Clean. Environ. Syst. 2025, 16, 100249. [Google Scholar] [CrossRef]
- Zukowski, S.; Gawne, B. Potential Effects of Willow (Salix spp.) Removal on Freshwater Ecosystem Dynamics: A Literature Review. 2006. Available online: https://opal.latrobe.edu.au/articles/report/Potential_Effects_of_Willow_Salix_spp_Removal_on_Freshwater_Ecosystem_Dynamics_A_Literature_Review/22239607?file=39526255 (accessed on 20 May 2025).
- Amichev, B.Y.; Hangs, R.D.; Konecsni, S.M.; Stadnyk, C.N.; Volk, T.A.; Bélanger, N.; Vujanovic, V.; Schoenau, J.J.; Moukoumi, J.; Van Rees, K.C.J. Willow short-rotation production systems in Canada and Northern United States: A review. Soil Sci. Soc. Am. J. 2014, 78, S168–S182. [Google Scholar] [CrossRef]
- Kenney, W.A.; Sennerby-Forsse, L.; Layton, P. A review of biomass quality research relevant to the use of poplar and willow for energy conversion. Biomass 1990, 21, 163–188. [Google Scholar] [CrossRef]
- Dincă, L.; Crisan, V.; Ienasoiu, G.; Murariu, G.; Drasovean, R. Environmental Indicator Plants in Mountain Forests: A Review. Plants 2024, 13, 3358. [Google Scholar] [CrossRef]
- Polinko, A.D.; Coupland, K. Paradigm shifts in forestry and forest research: A bibliometric analysis. Can. J. For. Res. 2021, 51, 154–162. [Google Scholar] [CrossRef]
- Bratu, I.; Dinca, L.; Constandache, C.; Murariu, G. Resilience and Decline: The Impact of Climatic Variability on Temperate Oak Forests. Climate 2025, 13, 119. [Google Scholar] [CrossRef]
- Enescu, C.M.; Mihalache, M.; Ilie, L.; Dinca, L.; Constandache, C.; Murariu, G. Agricultural Benefits of Shelterbelts and Windbreaks: A Bibliometric Analysis. Agriculture 2025, 15, 1204. [Google Scholar] [CrossRef]
- Sullivan, A. Bridging the divide between rural and urban community-based forestry: A bibliometric review. For. Policy Econ. 2022, 144, 102826. [Google Scholar] [CrossRef]
- Dinca, L.; Crisan, V.; Murariu, G.; Hahuie, V. The economic value of forest fruits. A bibliometric analysis researched during the period of 1978 to 2023. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2025, 25, 273–283. [Google Scholar]
- Murariu, G.; Dinca, L.; Munteanu, D. Trends and Applications of Principal Component Analysis in Forestry Research: A Literature and Bibliometric Review. Forests 2025, 16, 1155. [Google Scholar] [CrossRef]
- Clarivate.Com. Web of Science Core Collection. Available online: https://clarivate.com/academia-government/scientific-and-academic-research/research-discovery-and-referencing/web-of-science/ (accessed on 20 April 2025).
- Scopus. Available online: https://www.elsevier.com/products/scopus (accessed on 21 April 2025).
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Wouters, P. Aux origines de la scientométrie: La naissance du Science Citation Index. Actes Rech. Sci. Soc. 2006, 4, 10–21. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Microsoft Corporation. Microsoft Excel. Available online: https://www.microsoft.com/en-us/microsoft-365/excel?legRedir=true&CorrelationId=3bb60ab0-fe13-41a4-812b-2627667cf346 (accessed on 26 May 2025).
- Geochart. Available online: https://developers.google.com/chart/interactive/docs/gallery/geochart (accessed on 23 May 2025).
- VOS Viewer. Available online: https://www.vosviewer.com/ (accessed on 22 May 2025).
- Bourgeois, B.; González, E. Pulses of seed release in riparian Salicaceae coincide with high atmospheric temperature. River Res. Appl. 2019, 35, 1590–1596. [Google Scholar] [CrossRef]
- Sitzia, T.; Barcaccia, G.; Lucchin, M. Genetic diversity and stand structure of neighboring white willow (Salix alba L.) populations along fragmented riparian corridors: A case study. Silvae Genet. 2018, 67, 79–88. [Google Scholar] [CrossRef]
- Beall, C.C.; Dixon, M.D.; Illeperuma, N.D.; Sweeney, M.R.; Johnson, W.C. Expansion of woody vegetation on a Missouri River reservoir delta-backwater. Ecohydrology 2022, 15, e2357. [Google Scholar] [CrossRef]
- Lumme, I.; Laiho, O. Effects of Domestic Sewage Sludge, Conifer Bark Ash and Wood Fibre Waste on Soil Characteristics and the Growth of Salix aquatica; Communicationes Instituti Forestalis Fenniae: Helsinki, Finland, 1988; p. 24. [Google Scholar]
- Shaw, R.F.; Pakeman, R.J.; Young, M.R.; Iason, G.R. Microsite affects willow sapling recovery from bank vole (Myodes glareolus) herbivory, but does not affect grazing risk. Ann. Bot. 2013, 112, 731–739. [Google Scholar] [CrossRef]
- Kou, L.; You, S.; Liu, M.; Li, Y.; Liu, P.; Wang, Z.; Cheng, F. Morphology of Chrysomela vigintipunctata alticola Wang (Coleoptera: Chrysomelidae) with references on the immature stage of larvae in an alpine meadow. Zoomorphology 2025, 144, 5. [Google Scholar] [CrossRef]
- Guitián, M.A.R. Temperate riverside forests without alder trees in the north-west of the Iberian Peninsula: Ecology, phytosociological profile and interest for preservation policies. Mediterr. Bot. 2010, 31, 9. [Google Scholar]
- Zhai, D.; Chen, R.; Chen, Q.; Cheng, X. The effect of afforestation type on soil nitrogen dynamics in the riparian zone of the upper Yangtze River of China. Chemosphere 2023, 341, 140067. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, P.; Xie, G.; Wang, W. Impacts of Climate Change Conditions on the Potential Distribution of Anoplophora glabripennis and Its Host Plants, Salix babylonica and Salix matsudana, in China. Ecol. Evol. 2024, 14, e70692. [Google Scholar] [CrossRef]
- Casaubon, E.A.; Cueto, G.R.; Hodara, K.; González, A.C. Influence of site quality on the attack of Platypus mutatus Chapuis (Coleoptera, Platypodidae) to a willow plantation (Salix babylonica × Salix alba cv 131/27). Ecol. Austral 2004, 14, 113. [Google Scholar]
- Lalonde, R.S.; Pinno, B.D.; MacKenzie, M.D.; Utting, N. Capping dewatered oil sands fluid fine tailings with salvaged reclamation soils at varying depths to grow woody plants. Can. J. Soil Sci. 2020, 100, 546–557. [Google Scholar] [CrossRef]
- Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Jones, C.L. Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico. Biodivers. Conserv. 2009, 18, 247–269. [Google Scholar] [CrossRef]
- Manoukian, M.; Marlow, C.B. Historical trends in willow cover along streams in a Southwestern Montana cattle allotment. Northwest Sci. 2002, 76, 213–220. [Google Scholar]
- Nogué, S.; de Nascimento, L.; Fernández-Palacios, J.M.; Whittaker, R.J.; Willis, K.J. The ancient forests of La Gomera, Canary Islands, and their sensitivity to environmental change. J. Ecol. 2013, 101, 368–377. [Google Scholar] [CrossRef]
- Blanken, P.D.; Rouse, W.R. Evidence of water conservation mechanisms in several subarctic wetland species. J. Appl. Ecol. 1996, 33, 842–850. [Google Scholar] [CrossRef]
- Konôpka, B.; Pajtík, J.; Bošeľa, M.; Šebeň, V.; Shipley, L.A. Modeling forage potential for red deer (Cervus elaphus): A tree-level approach. Eur. J. For. Res. 2020, 139, 419–430. [Google Scholar] [CrossRef]
- Popa, A.; Popa, I. Photosynthesis Traits of Pioneer Broadleaves Species from Tailing Dumps in Călimani Mountains (Eastern Carpathians). Forests 2021, 12, 658. [Google Scholar] [CrossRef]
- Burge, O.R.; Bodmin, K.A.; Clarkson, B.R.; Bartlam, S.; Watts, C.H.; Tanner, C.C. Glyphosate redirects wetland vegetation trajectory following willow invasion. Appl. Veg. Sci. 2017, 20, 620–630. [Google Scholar] [CrossRef]
- Pacaldo, R.S.; Volk, T.A.; Briggs, R.D. No significant differences in soil organic carbon contents along a chronosequence of shrub willow biomass crop fields. Biomass Bioenergy 2013, 58, 136–142. [Google Scholar] [CrossRef]
- Coleman, B.R.; Martin, A.R.; Thevathasan, N.V.; Gordon, A.M.; Isaac, M.E. Leaf trait variation and decomposition in short-rotation woody biomass crops under agroforestry management. Agric. Ecosyst. Environ. 2020, 298, 106971. [Google Scholar] [CrossRef]
- Labrecque, M.; Teodorescu, T.I. Influence of plantation site and wastewater sludge fertilization on the performance and foliar nutrient status of two willow species grown under SRIC in southern Quebec (Canada). For. Ecol. Manag. 2001, 150, 223–239. [Google Scholar] [CrossRef]
- Vincent, K.R.; Friedman, J.M.; Griffin, E.R. Erosional consequence of saltcedar control. Environ. Manag. 2009, 44, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Wiesenborn, W.D. Biomasses of Arthropod Taxa Differentially Increase on Nitrogen-Fertilized Willows and Cottonwoods. Restor. Ecol. 2011, 19, 323–332. [Google Scholar] [CrossRef]
- Boland, J.M. The Impact of an Invasive Ambrosia Beetle on the Riparian Habitats of the Tijuana River Valley, California. PeerJ 2016, 4, e2141. [Google Scholar] [CrossRef]
- Goodrich, D.C.; Scott, R.; Qi, J.; Goff, B.; Unkrich, C.L.; Moran, M.S.; Williams, D.; Schaeffer, S.; Snyder, K.; MacNish, R.; et al. Seasonal Estimates of Riparian Evapotranspiration Using Remote and In Situ Measurements. Agric. For. Meteorol. 2000, 105, 281–309. [Google Scholar] [CrossRef]
- Seo, H.N.; Lim, H.I.; Lee, J.W. Nuclear DNA Markers to Distinguish between Salix caprea, Salix gracilistyla, and Their Interspecific Hybrids. HortScience 2024, 59, 1457–1464. [Google Scholar] [CrossRef]
- Puchalska, E.K.; Kropczyńska-Linkiewicz, D.; Kaźmierczak, B. Evaluation of the Co-occurrence of Spider Mites (Acari: Tetranychidae) and Phytoseiid Mites (Acari: Phytoseiidae) on Willows (Salix spp.) in Nurseries and Natural Environments. Int. J. Acarol. 2014, 40, 473–484. [Google Scholar] [CrossRef]
- Anderson, R.C.; Schwegman, J.E.; Anderson, M.R. Micro-Scale Restoration: A 25-Year History of a Southern Illinois Barrens. Restor. Ecol. 2000, 8, 296–306. [Google Scholar] [CrossRef]
- Shropshire, C.; Wagner, R.G.; Bell, F.W.; Swanton, C.J. Light Attenuation by Early Successional Plants of the Boreal Forest. Can. J. For. Res. 2001, 31, 812–823. [Google Scholar] [CrossRef]
- Wasklewicz, T.A. Riparian Vegetation Variability along Perennial Streams in Central Arizona. Phys. Geogr. 2001, 22, 361–375. [Google Scholar] [CrossRef]
- Nowak, A.; Nobis, M.; Gębala, M.; Wasik, P. Populetum pamiricae ass. nova—An Endemic Forest Association to Pamir in Tajikistan (Middle Asia). Open Life Sci. 2015, 10, 71–80. [Google Scholar] [CrossRef]
- Liu, H.; Bauer, L.S.; Zhao, T.; Gao, R.; Poland, T.M. Seasonal Abundance and Development of the Asian Longhorned Beetle and Natural Enemy Prevalence in Different Forest Types in China. Biol. Control 2016, 103, 154–164. [Google Scholar] [CrossRef]
- Wang, C.; Masoudi, A.; Wang, M.; Wang, Y.; Zhang, Z.; Cao, J.; Feng, J.; Yu, Z.; Liu, J. Stochastic Processes Drive the Dynamic Assembly of Bacterial Communities in Salix matsudana Afforested Soils. Front. Microbiol. 2024, 15, 1467813. [Google Scholar] [CrossRef]
- Knutson, M.G.; McColl, L.E.; Suarez, S.A. Breeding Bird Assemblages Associated with Stages of Forest Succession in Large River Floodplains. Nat. Areas J. 2005, 25, 55–70. [Google Scholar]
- McAlhaney, A.L.; Keim, R.F.; Allen, S.T. Species-Specific Growth Capacity for Floodplain Forest Trees Inferred from Sapwood Efficiency and Individual Tree Competition. For. Ecol. Manag. 2020, 476, 118427. [Google Scholar] [CrossRef]
- Yang, J.; Mu, J.; Zhang, Y.; Fu, C.; Dong, Q.; Yang, Y.; Wu, Q. Initial Carbon Quality of Newly Shed Foliar Litter in an Alpine Forest from Proximate Analysis and 13C NMR Spectroscopy Perspectives. Forests 2022, 13, 1886. [Google Scholar] [CrossRef]
- Han, Q.; Harayama, H.; Uemura, A.; Ito, E.; Utsugi, H.; Kitao, M.; Maruyama, Y. High Biomass Productivity of Short-Rotation Willow Plantation in Boreal Hokkaido Achieved by Mulching and Cutback. Forests 2020, 11, 505. [Google Scholar] [CrossRef]
- Holzapfel, G.; Weihs, P.; Rauch, H.P. Use of the Shade-a-lator 6.2 Model to Assess the Shading Potential of Riparian Purple Willow (Salix purpurea) Coppices on Small to Medium Sized Rivers. Ecol. Eng. 2013, 61, 697–705. [Google Scholar] [CrossRef]
- Sühs, R.B.; de Sá Dechoum, M.; Ziller, S.R. Invasion by a Non-Native Willow (Salix × rubens) in Brazilian Subtropical Highlands. Perspect. Ecol. Conserv. 2020, 18, 203–209. [Google Scholar] [CrossRef]
- Magdaleno, F.; Blanco Garrido, F.; Bonada i Caparrós, N.; Herrera Grao, T. How Are Riparian Plants Distributed along the Riverbank Topographic Gradient in Mediterranean Rivers? Application to Minimally Altered River Stretches in Southern Spain. Limnetica 2014, 33, 124–138. [Google Scholar] [CrossRef]
- Telenius, B.F. Stand Growth of Deciduous Pioneer Tree Species on Fertile Agricultural Land in Southern Sweden. Biomass Bioenergy 1999, 16, 13–23. [Google Scholar] [CrossRef]
- Alldredge, M.W.; Peek, J.M.; Wall, W.A. Nutritional Quality of Forages Used by Elk in Northern Idaho. Rangel. Ecol. Manag. 2002, 55, 253–259. [Google Scholar]
- Aronsson, P.; Heinsoo, K.; Perttu, K.; Hasselgren, K. Spatial Variation in Above-Ground Growth in Unevenly Wastewater-Irrigated Willow Salix viminalis Plantations. Ecol. Eng. 2002, 19, 281–287. [Google Scholar] [CrossRef]
- Mosner, E.; Liepelt, S.; Ziegenhagen, B.; Leyer, I. Floodplain Willows in Fragmented River Landscapes: Understanding Spatio-Temporal Genetic Patterns as a Basis for Restoration Plantings. Biol. Conserv. 2012, 153, 211–218. [Google Scholar] [CrossRef]
- Ayub, M.; Rizvi, S.A.H.; Hussain, I.; Hashmi, M.A.; Hussain, I.; Hussain, S.; Hussain, Z.; Kabir, R. Mealybug (Drosicha sp. Monophlebidae: Hemiptera) Population Density on Different Host Plants and Their Management. Pak. J. Agric. Res. 2023, 36, 297. [Google Scholar] [CrossRef]
- Albanito, F.; Beringer, T.; Corstanje, R.; Poulter, B.; Stephenson, A.; Zawadzka, J.; Smith, P. Carbon Implications of Converting Cropland to Bioenergy Crops or Forest for Climate Mitigation: A Global Assessment. GCB Bioenergy 2016, 8, 81–95. [Google Scholar] [CrossRef]
- Li, X.; He, H.S.; Wu, Z.; Liang, Y.; Schneiderman, J.E. Comparing Effects of Climate Warming, Fire, and Timber Harvesting on a Boreal Forest Landscape in Northeastern China. PLoS ONE 2013, 8, e59747. [Google Scholar] [CrossRef]
- Hytönen, J.; Kaunisto, S. Effect of Fertilization on the Biomass Production of Coppiced Mixed Birch and Willow Stands on a Cut-Away Peatland. Biomass Bioenergy 1999, 17, 455–469. [Google Scholar] [CrossRef]
- Bock, C.E.; Bock, J.H. Effects of Wildfire on Riparian Trees in Southeastern Arizona. Southwest. Nat. 2014, 59, 570–576. [Google Scholar] [CrossRef]
- Nerlich, K.; Seidl, F.; Mastel, K.; Graeff-Hönninger, S.; Claupein, W. Effects of Willow (Salix spp.) and Poplar (Populus spp.) in Short Rotation on the Biodiversity Based on the Example of Ground Beetles (Carabidae). Gesunde Pflanz. 2012, 64, 129–139. [Google Scholar] [CrossRef]
- Boelcke, B.; Kahle, P. Energy Forestry with Willows and Poplars—Yields and Nutrient Supply. Pflanzenbauwissenschaften 2008, 12, 78–85. [Google Scholar]
- Karl, J.W.; Yelich, J.V.; Ellison, M.J.; Lauritzen, D. Estimates of willow (Salix spp.) canopy volume using unmanned aerial systems. Rangel. Ecol. Manag. 2020, 73, 531–537. [Google Scholar] [CrossRef]
- Adler, A.; Verwijst, T.; Aronsson, P. Estimation and relevance of bark proportion in a willow stand. Biomass Bioenergy 2005, 29, 102–113. [Google Scholar] [CrossRef]
- Juhász, E.; Molnár, Z.; Bede-Fazekas, Á.; Biró, M. General patterns of beavers’ selective foraging: How to evaluate the effects of a re-emerging driver of vegetation change along Central European small watercourses. Biodivers. Conserv. 2023, 32, 2197–2220. [Google Scholar] [CrossRef]
- Brand, L.A.; Stromberg, J.C.; Noon, B.R. Avian density and nest survival on the San Pedro River: Importance of vegetation type and hydrologic regime. J. Wildl. Manag. 2010, 74, 739–754. [Google Scholar] [CrossRef]
- Jayawardana, J.M.C.K.; Westbrooke, M.; Wilson, M.; Hurst, C. Macroinvertebrate communities in willow (Salix spp.) and reed beds (Phragmites australis) in central Victorian streams in Australia. Mar. Freshw. Res. 2006, 57, 429–439. [Google Scholar] [CrossRef]
- Parádi, I.; Baar, J. Mycorrhizal fungal diversity in willow forests of different age along the river Waal, The Netherlands. For. Ecol. Manag. 2006, 237, 366–372. [Google Scholar] [CrossRef]
- Borz, S.A. Development of a modality-invariant multi-layer perceptron to predict operational events in motor-manual willow felling operations. Forests 2021, 12, 406. [Google Scholar] [CrossRef]
- Reddersen, J. SRC-willow (Salix viminalis) as a resource for flower-visiting insects. Biomass Bioenergy 2001, 20, 171–179. [Google Scholar] [CrossRef]
- Plante, P.M.; Rivest, D.; Vézina, A.; Vanasse, A. Root distribution of different mature tree species growing on contrasting textured soils in temperate windbreaks. Plant Soil 2014, 380, 429–439. [Google Scholar] [CrossRef]
- Mantero, G.; Morresi, D.; Negri, S.; Anselmetto, N.; Lingua, E.; Bonifacio, E.; Garbarino, M.; Marzano, R. Short-term drivers of post-fire forest regeneration in the Western Alps. Fire Ecol. 2023, 19, 23. [Google Scholar] [CrossRef]
- Ji, H.; Han, J.; Xue, J.; Hatten, J.A.; Wang, M.; Guo, Y.; Li, P. Soil organic carbon pool and chemical composition under different types of land use in wetland: Implication for carbon sequestration in wetlands. Sci. Total Environ. 2020, 716, 136996. [Google Scholar] [CrossRef] [PubMed]
- Przepióra, F.; Ciach, M. Tree microhabitats in natural temperate riparian forests: An ultra-rich biological complex in a globally vanishing habitat. Sci. Total Environ. 2022, 803, 149881. [Google Scholar] [CrossRef]
- Månsson, J.; Kalén, C.; Kjellander, P.; Andrén, H.; Smith, H. Quantitative estimates of tree species selectivity by moose (Alces alces) in a forest landscape. Scand. J. For. Res. 2007, 22, 407–414. [Google Scholar] [CrossRef]
- Krasnov, E.V.; Ragulina, I.R. Energy development alternatives—From global to local scale. In Innovations and Traditions for Sustainable Development; Springer International Publishing: Cham, Switzerland, 2021; pp. 23–35. [Google Scholar]
- Lindroth, A.; Verwijst, T.; Halldin, S. Water-use efficiency of willow: Variation with season, humidity and biomass allocation. J. Hydrol. 1994, 156, 1–19. [Google Scholar] [CrossRef]
- Park, B.B.; Yanai, R.D.; Sahm, J.M.; Ballard, B.D.; Abrahamson, L.P. Wood ash effects on soil solution and nutrient budgets in a willow bioenergy plantation. Water Air Soil Pollut. 2004, 159, 209–224. [Google Scholar] [CrossRef]
- Pacaldo, R.S.; Volk, T.A.; Briggs, R.D. Carbon sequestration in fine roots and foliage biomass offsets soil CO2 effluxes along a 19-year chronosequence of shrub willow (Salix x dasyclados) biomass crops. Bioenergy Res. 2014, 7, 769–776. [Google Scholar] [CrossRef]
- Börjesson, P.; Berndes, G. The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenergy 2006, 30, 428–438. [Google Scholar] [CrossRef]
- Caputo, J.; Balogh, S.B.; Volk, T.A.; Johnson, L.; Peuttmann, M.; Lippke, B.; Onell, E. Incorporating uncertainty into a life cycle assessment (LCA) model of short-rotation willow biomass (Salix spp.) crops. Bioenergy Res. 2014, 7, 48–59. [Google Scholar] [CrossRef]
- Hansen, E.A. Soil carbon sequestration beneath hybrid poplar plantations in the North Central United States. Biomass Bioenergy 1993, 5, 431–436. [Google Scholar] [CrossRef]
- Makeschin, F. Effects of energy forestry on soils. Biomass Bioenergy 1994, 6, 63–79. [Google Scholar] [CrossRef]
- Baum, C.; Leinweber, P.; Weih, M.; Lamersdorf, N.; Dimitriou, I. Effects of short rotation coppice with willows and poplar on soil ecology. Agric. For. Res. 2009, 3, 183–196. [Google Scholar]
- Jug, A.; Hofmann-Schielle, C.; Makeschin, F.; Rehfuess, K.E. Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany III: Soil ecological effects. For. Ecol. Manag. 1999, 121, 85–99. [Google Scholar] [CrossRef]
- Kahle, P.; Hildebrand, E.; Baum, C.; Boelcke, B. Long-term effects of short rotation forestry with willows and poplar on soil properties. Arch. Agron. Soil Sci. 2007, 53, 673–682. [Google Scholar] [CrossRef]
- Matthews, R.B.; Grogan, P. Potential C-sequestration rates under short-rotation coppiced willow and Miscanthus biomass crops: A modelling study. Asp. Appl. Biol. 2001, 65, 303–312. [Google Scholar]
- Alessandro, P.; Enrico, C.; Claudia, B.; Alessandro, C.; Maria, M.L.; Isabella, D.M. C stocks in abandoned short rotation forestry (SRF) plantations in Central Italy. New For. 2024, 55, 801–824. [Google Scholar] [CrossRef]
- Fara, L.; Cincu, C.; Hubca, G.; Comaneci, D. Cultivation and utilization of specific wood biomass for synthesis of cellulose-based bioethanol. In XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR); CSBE/SCGAB: Quebec, QC, Canada, 2010. [Google Scholar]
- Zhang, L.; Qin, M.; Su, C.-W. The inevitable role of the oil market: Does its price really matter for forestry investment in China? Ann. For. Res. 2024, 67, 135–149. [Google Scholar] [CrossRef]
- Lys, N.; Butenko, Y.; Kolisnyk, O.; Mostovenko, V.; Masyk, I.; Hlupak, Z.; Mikulina, M.; Sobran, I.; Livoshchenko, Y.; Sakhoshko, M. Sustainable energy and biofuel potential of energy willow (Salix, L.) biomass in the first year after harvesting in a long growing cycle. Ecol. Eng. Environ. Technol. 2025, 26, 342–346. [Google Scholar] [CrossRef]
- Pai, S.; Hall, C.A. The Willow Project and environmental justice: Analyzing US energy policy’s impact on sensitive ecosystems and local communities. Case Stud. Environ. 2025, 9, 2463820. [Google Scholar] [CrossRef]
- Dimitriou, I.; Mola-Yudego, B.; Aronsson, P. Impact of willow short rotation coppice on water quality. BioEnergy Res. 2012, 5, 537–545. [Google Scholar] [CrossRef]
- Schmidt-Walter, P.; Lamersdorf, N.P. Biomass production with willow and poplar short rotation coppices on sensitive areas—The impact on nitrate leaching and groundwater recharge in a drinking water catchment near Hanover, Germany. BioEnergy Res. 2012, 5, 546–562. [Google Scholar] [CrossRef]
- Volk, T.A.; Verwijst, T.; Tharakan, P.J.; Abrahamson, L.P.; White, E.H. Growing fuel: A sustainability assessment of willow biomass crops. Front. Ecol. Environ. 2004, 2, 411–418. [Google Scholar]
- Daugaviete, M.; Makovskis, K.; Lazdins, A.; Lazdina, D. Suitability of fast-growing tree species (Salix spp., Populus spp., Alnus spp.) for the establishment of economic agroforestry zones for biomass energy in the Baltic Sea region. Sustainability 2022, 14, 16564. [Google Scholar] [CrossRef]
- Álvarez-Álvarez, P.; Pizarro, C.; Barrio-Anta, M.; Cámara-Obregón, A.; Bueno, J.L.M.; Álvarez, A.; Gutiérrez, I.; Burslem, D.F. Evaluation of tree species for biomass energy production in Northwest Spain. Forests 2018, 9, 160. [Google Scholar] [CrossRef]
- Scriba, C.; Lunguleasa, A.; Spirchez, C.; Ciobanu, V. Influence of INGER and TORDIS energetic willow clones planted on contaminated soil on the survival rates, yields and calorific value. Forests 2021, 12, 826. [Google Scholar] [CrossRef]
- Keoleian, G.A.; Volk, T.A. Renewable energy from willow biomass crops: Life cycle energy, environmental and economic performance. Crit. Rev. Plant Sci. 2005, 24, 385–406. [Google Scholar] [CrossRef]
- Jama, A.; Nowak, W. Willow (Salix viminalis L.) in purifying sewage sludge treated soils. Pol. J. Agron. 2012, 9, 3–6. [Google Scholar]
- Durrant, T.H.; de Rigo, D.; Caudullo, G. Salix alba in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; Publications Office of the European Union: Luxembourg, 2016; p. 168. [Google Scholar]
- Bolliger, J.; Schulte, L.A.; Burrows, S.N.; Sickley, T.A.; Mladenoff, D.J. Assessing ecological restoration potentials of Wisconsin (U.S.A.) using historical landscape reconstructions. Restor. Ecol. 2004, 12, 124–142. [Google Scholar] [CrossRef]
- Beechie, T.J.; Stefankiv, O.; Bond, M.; Pollock, M. Modeling riparian species occurrence from historical surveys to guide restoration planning in northwestern USA. Ecosphere 2021, 12, e03525. [Google Scholar] [CrossRef]
- Ganatsas, P.; Tsakaldimi, M.; Oikonomakis, N.; Davis, M.; Manios, C.; Broumpas, C. Reduction, degradation and restoration of Salix alba habitat in the Kerkini National Park, northern Greece; an important habitat for endangered bird species. Ecol. Eng. 2022, 179, 106593. [Google Scholar] [CrossRef]
- Gustafsson, L. Plant conservation aspects of energy forestry—A new type of land use in Sweden. For. Ecol. Manag. 1987, 21, 141–161. [Google Scholar] [CrossRef]
- Lyubov, V.; Popov, A.; Popova, E.; Tretyakov, S.; Paramonov, A.; Koptev, S. Study of the efficiency of energy use of willow chips and torrefied hydrolytic lignin pellets. In E3S Web of Conferences; EDP Sciences: London, UK, 2021; Volume 265, p. 04006. [Google Scholar]
- Verwijst, T. Willows: An underestimated resource for environment and society. For. Chron. 2001, 77, 281–285. [Google Scholar] [CrossRef]
- Livingstone, D.; Smyth, B.M.; Lyons, G.; Foley, A.M.; Murray, S.T.; Johnston, C. Life cycle assessment of a short-rotation coppice willow riparian buffer strip for farm nutrient mitigation and renewable energy production. Renew. Sustain. Energy Rev. 2022, 158, 112154. [Google Scholar] [CrossRef]
- Li, Y.; Hong, S.; Fang, S.; Cui, G. Thinning promotes litter decomposition and nutrient release in poplar plantations via altering the microclimate and understory plant diversity. Ann. For. Res. 2023, 66, 3–18. [Google Scholar] [CrossRef]
- González, E.; Martínez-Fernández, V.; Shafroth, P.B.; Sher, A.A.; Henry, A.L.; Garófano-Gómez, V.; Corenblit, D. Regeneration of Salicaceae riparian forests in the Northern Hemisphere: A new framework and management tool. J. Environ. Manag. 2018, 218, 374–387. [Google Scholar] [CrossRef]
- McInerney, P.J.; Doody, T.M.; Davey, C.D. Invasive species in the Anthropocene: Help or hindrance? J. Environ. Manag. 2021, 293, 112871. [Google Scholar] [CrossRef]
- Van Splunder, I.; Coops, H.; Schoor, M.M. Tackling the bank erosion problem: (Re-) introduction of willows on riverbanks. Water Sci. Technol. 1994, 29, 379–381. [Google Scholar] [CrossRef]
- Braatne, J.H.; Jamieson, R.; Gill, K.M.; Rood, S.B. Instream flows and the decline of riparian cottonwoods along the Yakima River, Washington, USA. River Res. Appl. 2007, 23, 247–267. [Google Scholar] [CrossRef]
- Burke, M.; Jorde, K.; Buffington, J.M. Application of a hierarchical framework for assessing environmental impacts of dam operation: Changes in streamflow, bed mobility and recruitment of riparian trees in a western North American river. J. Environ. Manag. 2009, 90, 224–236. [Google Scholar] [CrossRef]
- Mahoney, J.M.; Rood, S.B. Stream flow requirements for cottonwood seedling recruitment: An integrated model. Wetlands 1998, 18, 634–645. [Google Scholar] [CrossRef]
- Karrenberg, S.; Edwards, P.J.; Kollmann, J. The life history of Salicaceae living in the active zone of floodplains. Freshw. Biol. 2002, 47, 733–761. [Google Scholar] [CrossRef]
- DeBell, D.S. Populus trichocarpa Torr. Gray: Black cottonwood. In Silvics of North America: Hardwoods; Burns, R.M., Honkala, B.H., Eds.; USDA Forest Service: Washington, DC, USA, 1990. [Google Scholar]
- Anderson, H.W.; Zsuffa, L. Genetically improved hardwoods as a potential energy source in Ontario. In Energy Developments: New Forms, Renewables, Conservation; Pergamon Materials Series; Elsevier: Amsterdam, The Netherlands, 1984; pp. 211–214. [Google Scholar]
- Filat, M.; Chira, D. Research concerning introduction in culture of the poplars and willows species/clones with superior forest productive potential and increased resistance to adversities. Ann. For. Res. 2004, 47, 83–89. [Google Scholar]
- Hänel, M.; Istenič, D.; Brix, H.; Arias, C.A. Wastewater-fertigated short-rotation coppice, a combined scheme of wastewater treatment and biomass production: A state-of-the-art review. Forests 2022, 13, 810. [Google Scholar] [CrossRef]
- Sevel, L.; Ingerslev, M.; Nord-Larsen, T.; Jørgensen, U.; Holm, P.E.; Schelde, K.; Raulund-Rasmussen, K. Fertilization of SRC willow, II: Leaching and element balances. BioEnergy Res. 2014, 7, 338–352. [Google Scholar] [CrossRef]
- Kolozsvári, I.; Kun, Á.; Jancsó, M.; Bakti, B.; Bozán, C.; Gyuricza, C. Utilization of fish farm effluent for irrigation short rotation willow (Salix alba L.) under lysimeter conditions. Forests 2021, 12, 457. [Google Scholar] [CrossRef]
- Corneanu, M.; Nețoiu, C.; Fericean, M.L.; Hernea, C.; Sărac, I.; Stroia, C. The evaluation of the tolerance to pests and diseases in Salix sp. genitors collection in the first growing season. Res. J. Agric. Sci. 2016, 48, 87–95. [Google Scholar]
- Chase, K.D.; Righton-Bartlett, R.; Percival, C.D. Laboratory effects of three biocontrol agents against imported willow leaf beetle, 2023. Arthropod Manag. Tests 2024, 49, tsae082. [Google Scholar] [CrossRef]
- Kumar, P.; Thakur, T.S.; Kumar, A.; Sharma, S. Records of insect pests attacking Salix spp. (willow) in the Spiti valley, Lahaul and Spiti, Himachal Pradesh. Int. J. Farm Sci. 2025, 15, 1–8. [Google Scholar] [CrossRef]
- Li, P.; Song, W.; Zhang, Y.; Yang, Y.; Li, S.; Zhang, J. Drought stress enhances plastid-mediated RNA interference for efficient the willow leaf beetle management. Pestic. Biochem. Physiol. 2024, 204, 106037. [Google Scholar] [CrossRef]
- Pesenti, L. Bacterial Threat to Willows: Understanding the Epidemiology of Brenneria salicis. Plant Health Cases 2024, phcs20240029. [Google Scholar] [CrossRef]
- Hosseini-Nasabnia, Z.; Van Rees, K.; Vujanovic, V. Preventing unwanted spread of invasive fungal species in willow (Salix spp.) plantations. Can. J. Plant Pathol. 2016, 38, 325–337. [Google Scholar] [CrossRef]
- Savoie, P.; Current, D.; Robert, F.S.; Hébert, P.L. Harvest of natural shrubs with a biobaler in various environments in Québec, Ontario and Minnesota. Appl. Eng. Agric. 2012, 28, 795–801. [Google Scholar] [CrossRef]
- Dinca, L.; Constandache, C.; Postolache, R.; Murariu, G.; Tupu, E. Timber Harvesting in Mountainous Regions: A Comprehensive Review. Forests 2025, 16, 495. [Google Scholar] [CrossRef]
- Timis-Gansac, V.; Dinca, L.; Constandache, C.; Murariu, G.; Cheregi, G.; Timofte, C.S.C. Conservation biodiversity in arid areas: A review. Sustainability 2025, 17, 2422. [Google Scholar] [CrossRef]
- Dinca, L.; Coca, A.; Tudose, N.C.; Marin, M.; Murariu, G.; Munteanu, D. The Role of Trees in Sand Dune Rehabilitation: Insights from Global Experiences. Appl. Sci. 2025, 15, 7358. [Google Scholar] [CrossRef]
- Argus, G.W. Infrageneric classification of Salix (Salicaceae) in the new world. Syst. Bot. Monogr. 1997, 52, 1–121. [Google Scholar] [CrossRef]
- Lauron-Moreau, A.; Pitre, F.E.; Argus, G.W.; Labrecque, M.; Brouillet, L. Phylogenetic relationships of American willows (Salix, L.; Salicaceae). PLoS ONE 2015, 10, e0121965. [Google Scholar]
- Jiménez, N.L.; Farji-Brener, A.G.; Calcaterra, L.A. Long-term quantification of leaf-cutting ant damage in willow forestations in the lower delta of the Paraná River, Argentina. Agric. For. Entomol. 2022, 24, 432–445. [Google Scholar] [CrossRef]
- Dincă, L.; Murariu, G.; Enescu, C.M.; Achim, F.; Georgescu, L.; Murariu, A.; Holonec, L. Productivity differences between southern and northern slopes of Southern Carpathians (Romania) for Norway spruce, silver fir, birch and black alder. Not. Bot. Horti Agrobot. 2020, 48, 1070–1084. [Google Scholar] [CrossRef]
- Ciuvat, A.L.; Abrudan, I.V.; Ciuvat, C.G.; Marcu, C.; Lorent, A.; Dinca, L.; Szilard, B. Black Locust (Robinia pseudoacacia L.) in Romanian Forestry. Diversity 2022, 14, 780. [Google Scholar] [CrossRef]
- Murariu, G.; Dinca, L.; Tudose, N.; Crisan, V.; Georgescu, L.; Munteanu, D.; Mocanu, G.D. Structural characteristics of the main resinous stands from Southern Carpathians, Romania. Forests 2021, 12, 1029. [Google Scholar] [CrossRef]
- Silvestru-Grigore, C.V.; Dinulică, F.; Spârchez, G.; Hălălișan, A.F.; Dincă, L.C.; Enescu, R.E.; Crișan, V.E. Radial growth behavior of pines on Romanian degraded lands. Forests 2018, 9, 213. [Google Scholar] [CrossRef]
- Goidts, E.; Van Wesemael, B.; Crucifix, M. Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. Eur. J. Soil Sci. 2009, 60, 723–739. [Google Scholar] [CrossRef]
- Dincă, L.C.; Dincă, M.; Vasile, D.; Sparchez, G.; Holonec, L. Calculating organic carbon stock from forest soils. Not. Bot. Horti Agrobot. 2015, 43, 568–575. [Google Scholar] [CrossRef]
- Makeschin, F. Short rotation forestry in Central and Northern Europe-introduction and conclusions. For. Ecol. Manag. 1999, 121, 1–7. [Google Scholar]
- Qin, Z.; Dunn, J.B.; Kwon, H.; Mueller, S.; Wander, M.M. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence. GCB Bioenergy 2016, 8, 66–80. [Google Scholar] [CrossRef]
- Verwijst, T.; Telenius, B. Leaching of nitrogen and phosphorus from two willow short-rotation coppice systems in the Netherlands. Biomass Bioenergy 1999, 16, 411–419. [Google Scholar]
- Norton, B.; Volk, T.A.; Volk, T.A. Short rotation willow coppice production systems. In Biofuels and Industrial Products from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2006; pp. 405–430. [Google Scholar]
Crt. No. | Journal | Documents | Citations | Total Link Strength |
---|---|---|---|---|
1 | Restoration Ecology | 7 | 71 | 11 |
2 | River Research and Applications | 4 | 55 | 10 |
3 | Biomass & Bioenergy | 18 | 625 | 9 |
4 | Forest Ecology and Management | 36 | 969 | 9 |
5 | Journal of Wildlife Management | 11 | 176 | 9 |
6 | Biological Conservation | 3 | 248 | 8 |
7 | Journal of Environmental Management | 5 | 165 | 7 |
8 | Ecological Engineering | 5 | 206 | 5 |
9 | Ecological Modelling | 3 | 57 | 5 |
10 | Biodiversity and Conservation | 4 | 36 | 3 |
11 | Forests | 8 | 131 | 3 |
12 | Annals of Forest Science | 4 | 95 | 2 |
13 | Canadian Journal of Forest Research | 4 | 75 | 1 |
14 | Wetlands | 6 | 143 | 1 |
Crt. No. | Keyword | Occurrences | Total Link Strength |
---|---|---|---|
1 | management | 61 | 157 |
2 | willow | 52 | 136 |
3 | vegetation | 45 | 118 |
4 | restoration | 27 | 91 |
5 | forest | 38 | 87 |
6 | growth | 36 | 86 |
7 | biodiversity | 24 | 80 |
8 | conservation | 25 | 79 |
9 | dynamics | 28 | 74 |
10 | habitat | 21 | 72 |
11 | river | 20 | 64 |
12 | diversity | 19 | 52 |
13 | Salix | 22 | 50 |
14 | riparian | 14 | 48 |
15 | biomass | 20 | 46 |
Cur. No. | Willow Species | Analyzed Issue | Country | Cited Article |
---|---|---|---|---|
1 | Salix alba L. | Seed release in riparian Salicaceae; genetic diversity and stand structure | Spain, Italy | Bourgeois and González, 2019; Sitzia et al., 2018 [66,67] |
2 | Salix amygdaloides Andersson | Expansion of woody vegetation on a river reservoir | USA | Beall et al., 2022 [68] |
3 | Salix aquatica L. | Effects of domestic sewage sludge, conifer bark ash, and wood fiber waste on soil characteristics and the growth | Finland | Lumme and Laiho, 1988 [69] |
4 | Salix arbuscula L. | Impact of microsite characteristics on growth and survival of willows | UK | Shaw et al., 2013 [70] |
5 | Salix atopantha C.K. Schneider | Chrysomela vigintipunctata, a major forest pest of willow | China | Kou et al., 2025 [71] |
6 | Salix atrocinerea Brot. | Temperate riverside forests without alder trees | Spain | Guitian, 2010 [72] |
7 | Salix babylonica L. | The effect of afforestation type on soil nitrogen dynamics; impacts of climate change conditions on the potential distribution of Anoplophora glabripennis | China | Zhai et al., 2023; Zhang et al., 2024 [73,74] |
8 | Salix babylonica x Salix alba cv 131/27 | Attack of the wood borer Platypus mutatus Chapuis | Argentina | Casaubon et al., 2004 [75] |
9 | Salix bebbiana Sarg. | Capping dewatered oil sands fine fluid tailings with salvaged reclamation soils | Canada | Lalonde et al., 2020 [76] |
10 | Salix bonplandiana (H.B.K.)-Kunth | Diversity of riparian ecosystems | Mexico | Scott et al., 2009 [77] |
11 | Salix boothii Dorn | Historical trends in willow cover along streams | USA | Manoukian and Marlow, 2002 [78] |
12 | Salix canariensis Desf. | The ancient forests of La Gomera, Canary Islands and their sensitivity to environmental change | Spain | Nogue et al., 2013 [79] |
13 | Salix candida Flugge ex. Wild. | Water conservation in plant species | Canada | Blanken and Rouse, 1996 [80] |
14 | Salix caprea L. | Modeling forage potential for red deer; pioneer broadleaves species from tailing dumps | Slovakia; Romania | Konopka et al., 2020; Popa and Popa, 2021 [81,82] |
15 | Salix cinerea L. | Wetland vegetation trajectory following willow invasion | New Zealand | Burge et al., 2017 [83] |
16 | Salix x dasyclados [SV1] | Soil organic carbon content | SUA | Pacaldo et al., 2013 [84] |
17 | Salix dasyclados Wimm. | Leaf trait variation and decomposition | Canada | Coleman et al., 2020 [85] |
18 | Salix discolor Mühl. (Sd) | Influence of plantation site and wastewater sludge fertilization on the performance and foliar nutrient status | Canada | Labrecque and Teodorescu, 2001 [86] |
19 | Salix exigua Nuttall | Erosional consequences; biomasses of arthropod taxa | USA | Vincent et al., 2009; Wiesenborn, 2011 [87,88] |
20 | Salix geyerana Andersson | historical trends in willow cover along streams | USA | Manoukian and Marlow, 2002 [78] |
21 | Salix gooddingii C.R. Ball | Invasive ambrosia beetle; riparian evapotranspiration | USA | Boland, 2016; Goodrich et al., 2000 [89,90] |
22 | Salix gracilistyla Miq. | Nuclear DNA markers | Korea | Seo et al., 2024 [91] |
23 | Salix helvetica Vill. | Spider mites and phytoseiid mites on willows | Poland | Puchalska et al., 2014 [92] |
24 | Salix humilis Marshall | Vegetation change in remnant barrens; light attenuation by early successional plants | Canada | Anderson et al., 2000; Shropshire et al., 2001 [93,94] |
25 | Salix interior Nutt. | Water conservation in plant species | Canada | Blanken and Rouse, 1996 [80] |
26 | Salix lapponum L. | Impact of microsite characteristics on growth and survival of willows | UK | Shaw et al., 2013 [70] |
27 | Salix lasiandra Muhl. | Riparian vegetation variability | USA | Wasklewicz, 2001 [95] |
28 | Salix lasiolepis Benth. | Invasive ambrosia beetle | USA | Boland, 2016 [89] |
29 | Salix linearifolia Nutt. | Endemic forest association to Pamir | Tajikistan | Nowak et al., 2015 [96] |
30 | Salix matsudana L. | Pseudomonas fluorescens strain R124 inoculation; the Asian longhorned beetle; soil bacterial communities | China | Liu et al., 2016; Wang et al., 2024 [97,98] |
31 | Salix myrsinifolia Salisb. | Impact of microsite characteristics on growth and survival of willows | UK | Shaw et al., 2013 [70] |
32 | Salix nigra Marshall | Breeding bird assemblages; Species-specific growth capacity for floodplain forest trees | USA | Knutson et al., 2005; McAlhaney et al., 2020 [99,100] |
33 | Salix paraplesia Schneid. | Initial carbon quality of newly shed foliar litter | China | Yang et al., 2022 [101] |
34 | Salix x pet-susu | Agricultural mulch film as a means of effective weed control | Japan | Han et al., 2020 [102] |
35 | Salix planifolia Pursh | Water conservation in plant species | Canada | Blanken and Rouse, 1996 [80] |
36 | Salix purpurea L. | Use a model to assess the shading potential | Austria | Holzapfel et al., 2013 [103] |
37 | Salix reticulata L. | Water conservation in plant species | Canada | Blanken and Rouse, 1996 [80] |
38 | Salix × rubens | Invasion by a non-native willow in Brazilian subtropical highlands | Brazil | Suhs et al., 2020 [104] |
39 | Salix sachalinensis Trautv. & C.A. May | Agricultural mulch film as a means of effective weed control | Japan | Han et al., 2020 [102] |
40 | Salix salviifolia Brot. | Species structure and composition in Mediterranean riparian forests | Spain | Magdaleno et al., 2014 [105] |
41 | Salix schwerinii E.Wolf | Stand growth | Sweden | Telenius, 1999 [106] |
42 | Salix scouleriana Barratt | Nutritional quality of forages used by elk | USA | Alldredge et al., 2002 [107] |
43 | Salix viminalis L. and Salix dasyclados Wimm.(clone) | Nitrogen concentrations in groundwater; clonal and genetic diversity patterns | Sweden; Germany | Arronson et al., 2002; Mosner et al., 2012 [108,109] |
44 | Salix wilhelmsiana M. Bieb | Invasive insect pest of forest trees | Pakistan; Tajikistan | Ayub et al., 2023; Nowak et al., 2015 [96,110] |
Cur. No. | Analyzed Issue | Country | Cited Article |
---|---|---|---|
1 | Carbon implications of converting cropland to bioenergy crops | General | Albanito et al., 2016 [111] |
2 | Effects of climate warming and disturbance on trees | China | Li et al., 2013 [112] |
3 | Effect of fertilization on biomass production | Finland | Hytönen and Kaunisto, 1999 [113] |
4 | Effects of wildfire on riparian trees | USA | Bock and Bock, 2014 [114] |
5 | Effects of willow in short rotation on biodiversity | Germany | Nerlich et al., 2012 [115] |
6 | Energy forestry with willows | Germany | Boelcke and Kahle, 2008 [116] |
7 | Estimates of canopy volume using unmanned aerial systems | USA | Karl et al., 2020 [117] |
8 | Estimation and relevance of bark proportion in a willow stand | Sweden | Adler et al., 2005 [118] |
9 | General patterns of beavers’ selective foraging | Hungary | Juhasz et al., 2023 [119] |
10 | Importance of vegetation type on avian density | USA | Brand et al., 2010 [120] |
11 | Macroinvertebrate communities | Australia | Jayawardana et al., 2006 [121] |
12 | Mycorrhizal fungal diversity in willow stands | Netherlands | Parádi and Baar, 2006 [122] |
13 | Predict operational events in motor-manual willow felling operations | Romania | Borz, 2021 [123] |
14 | Resources for flower-visiting insects | Denmark | Reddersen, 2001 [124] |
15 | Root distribution of tree species from windbreaks | Canada | Plante et al., 2014 [125] |
16 | Short-term drivers of post-fire forest regeneration | Italy | Mantero et al., 2023 [126] |
17 | Soil organic carbon pool and chemical composition | China | Ji et al., 2020 [127] |
18 | Tree-related microhabitats | Poland | Przepióra and Ciach, 2022 [128] |
19 | Tree species selectivity by moose | Sweden | Mansson et al., 2007 [129] |
20 | Use of short-cycle willow plantations as biofuel | General | Krasnov and Ragulina, 2021 [130] |
21 | Water use efficiency of willows | Sweden | Lindroth et al., 1994 [131] |
22 | Wood ash effects on soil solution | USA | Park et al., 2004 [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achim, F.; Dinca, L.; Chira, D.; Raducu, R.; Chirca, A.; Murariu, G. Sustainable Management of Willow Forest Landscapes: A Review of Ecosystem Functions and Conservation Strategies. Land 2025, 14, 1593. https://doi.org/10.3390/land14081593
Achim F, Dinca L, Chira D, Raducu R, Chirca A, Murariu G. Sustainable Management of Willow Forest Landscapes: A Review of Ecosystem Functions and Conservation Strategies. Land. 2025; 14(8):1593. https://doi.org/10.3390/land14081593
Chicago/Turabian StyleAchim, Florin, Lucian Dinca, Danut Chira, Razvan Raducu, Alexandru Chirca, and Gabriel Murariu. 2025. "Sustainable Management of Willow Forest Landscapes: A Review of Ecosystem Functions and Conservation Strategies" Land 14, no. 8: 1593. https://doi.org/10.3390/land14081593
APA StyleAchim, F., Dinca, L., Chira, D., Raducu, R., Chirca, A., & Murariu, G. (2025). Sustainable Management of Willow Forest Landscapes: A Review of Ecosystem Functions and Conservation Strategies. Land, 14(8), 1593. https://doi.org/10.3390/land14081593