Historical Land Cover Dynamics and Projected Changes in the High Andean Zone of the Locumba Basin: A Predictive Approach Using Remote Sensing and Artificial Neural Network—Cellular Automata Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.3. Climatic and Topographic Datasets
2.4. Identification of Land Cover Types: Glacier, Lagoon, Wetland, Agriculture, and Grassland
3. Results
3.1. Historical Land Cover Analysis
3.1.1. Markov Transition Matrix Analysis
3.1.2. Accuracy of the Methodology in Land Cover Mapping
3.1.3. Temporal Evolution of Coverage
3.1.4. Time Series Classification
3.2. Projection of Future Scenarios
3.2.1. Spatial Variable Evaluation for Predictive Modeling
3.2.2. Validation of Future Scenario Models
3.2.3. Assessment of Historical and Future Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsai, Y.H.; Stow, D.; Chen, H.L.; Lewison, R.; An, L.; Shi, L. Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sens. 2018, 10, 927. [Google Scholar] [CrossRef]
- Yaranga, R.; Custodio, M.; Chanamé, F.; Pantoja, R. Floristic Diversity in Grasslands According to Plant Formation in the Shullcas River Sub-Basin, Junin, Peru. Sci. Agropecu. 2018, 9, 511–517. [Google Scholar] [CrossRef]
- Pizarro, S.E.; Pricope, N.G.; Vargas-Machuca, D.; Huanca, O.; Ñaupari, J. Mapping Land Cover Types for Highland Andean Ecosystems in Peru Using Google Earth Engine. Remote Sens. 2022, 14, 1562. [Google Scholar] [CrossRef]
- Buytaert, W.; Celleri, R.; Willems, P.; De Bièvre, B.; Wyseure, G. Spatial and Temporal Rainfall Variability in Mountainous Areas: A Case Study from the South Ecuadorian Andes. J. Hydrol. 2006, 329, 413–421. [Google Scholar] [CrossRef]
- Madrigal-Martínez, S.; Miralles i García, J.L. Land-Change Dynamics and Ecosystem Service Trends across the Central High-Andean Puna. Sci. Rep. 2019, 9, 9688. [Google Scholar] [CrossRef]
- Duque, A.; Peña, M.A.; Cuesta, F.; González-Caro, S.; Kennedy, P.; Phillips, O.L.; Calderón-Loor, M.; Blundo, C.; Carilla, J.; Cayola, L.; et al. Mature Andean Forests as Globally Important Carbon Sinks and Future Carbon Refuges. Nat. Commun. 2021, 12, 2138. [Google Scholar] [CrossRef]
- Molina, A.; Vanacker, V.; Balthazar, V.; Mora, D.; Govers, G. Complex Land Cover Change, Water and Sediment Yield in a Degraded Andean Environment. J. Hydrol. 2012, 472–473, 25–35. [Google Scholar] [CrossRef]
- Mora, D.E.; Willems, P. Decadal Oscillations in Rainfall and Air Temperature in the Paute River Basin—Southern Andes of Ecuador. Theor. Appl. Climatol. 2012, 108, 267–282. [Google Scholar] [CrossRef]
- Laraque, A.; Ronchail, J.; Cochonneau, G.; Pombosa, R.; Guyot, J.L. Heterogeneous Distribution of Rainfall and Discharge Regimes in the Ecuadorian Amazon Basin. J. Hydrometeorol. 2007, 8, 1364–1381. [Google Scholar] [CrossRef]
- Espinoza Villar, J.C.; Ronchail, J.; Guyot, J.L.; Cochonneau, G.; Naziano, F.; Lavado, W.; De Oliveira, E.; Pombosa, R.; Vauchel, P. Spatio-temporal Rainfall Variability in the Amazon Basin Countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol. 2009, 29, 1574–1594. [Google Scholar] [CrossRef]
- Pino-Vargas, E.; Chávarri-Velarde, E. Evidencias de Cambio Climático En La Región Hiperárida de La Costa Sur de Perú, Cabecera Del Desierto de Atacama. Tecnol. Cienc. Agua 2022, 13, 333–376. [Google Scholar] [CrossRef]
- Rind, D.; Goldberg, R.; Ruedy, R. Change in Climate Variability in the 21st Century. Clim. Change 1989, 14, 5–37. [Google Scholar] [CrossRef]
- Kazemzadeh, M.; Hashemi, H.; Jamali, S.; Uvo, C.B.; Berndtsson, R.; Huffman, G.J. Linear and Nonlinear Trend Analyzes in Global Satellite-Based Precipitation, 1998–2017. Earth’s Future 2021, 9, e2020EF001835. [Google Scholar] [CrossRef]
- Pino-Vargas, E.; Chávarri-Velarde, E.; Ingol-Blanco, E.; Mejía, F.; Cruz, A.; Vera, A. Impacts of Climate Change and Variability on Precipitation and Maximum Flows in Devil’s Creek, Tacna, Peru. Hydrology 2022, 9, 10. [Google Scholar] [CrossRef]
- Machaca-Pillaca, R.; Pino-Vargas, E.; Ramos-Fernández, L.; Quille-Mamani, J.; Torres-Rua, A. Estimación de La Evapotranspiración Con Fines de Riego En Tiempo Real de Un Olivar a Partir de Imágenes de Un Drone En Zonas Áridas, Caso La Yarada, Tacna, Perú. Idesia 2022, 40, 55–65. [Google Scholar] [CrossRef]
- Pino Vargas, E.M.; Huayna, G. Spatial and Temporal Evolution of Olive Cultivation Due to Pest Attack, Using Remote Sensing and Satellite Image Processing. Sci. Agropecu. 2022, 13, 149–157. [Google Scholar] [CrossRef]
- Pino-Vargas, E. Conflictos Por El Uso Del Agua En Una Región Árida: Caso Tacna, Perú. Diálogo Andin. 2021, 405–415. [Google Scholar] [CrossRef]
- Pino-Vargas, E.; Ramos, L.; Mejía, J.; Chávarri, E.; Ascensios, D. Medidas de Mitigación Para El Acuífero Costero La Yarada, Un Sistema Sobreexplotado En Zonas Áridas. Idesia 2020, 38, 21–31. [Google Scholar] [CrossRef]
- González-Domínguez, J.; Mora, A.; Chucuya, S.; Pino-Vargas, E.; Torres-Martínez, J.A.; Dueñas-Moreno, J.; Ramos-Fernández, L.; Kumar, M.; Mahlknecht, J. Hydraulic Recharge and Element Dynamics during Salinization in an Overexploited Coastal Aquifer of the World’s Driest Zone: Atacama Desert. Sci. Total Environ. 2024, 954, 176204. [Google Scholar] [CrossRef]
- Pocco, V.; Mendoza, A.; Chucuya, S.; Franco-León, P.; Huayna, G.; Ingol-Blanco, E.; Pino-Vargas, E. Assessment of Potential Aquifer Recharge Zones in the Locumba Basin, Arid Region of the Atacama Desert Using Integration of Two MCDM Methods: Fuzzy AHP and TOPSIS. Water 2024, 16, 2643. [Google Scholar] [CrossRef]
- Ayana, B.; Senbeta, F.; Seyoum, A. Analyses of LULC Dynamics in a Socio-Ecological System of the Bale Mountains Eco Region of Southeast Ethiopia. Environ. Monit. Assess. 2024, 196, 644. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Z.; Quddoos, A.; Aslam, R.W.; Naz, I.; Khalid, M.B.; Afzal, Z.; Liaquat, M.A.; Abdullah-Al-Wadud, M. Decadal Dynamics of Rangeland Cover Using Remote Sensing and Machine Learning Approach. Rangel. Ecol. Manag. 2025, 100, 1–13. [Google Scholar] [CrossRef]
- Shadmehri Toosi, A.; Batelaan, O.; Shanafield, M.; Guan, H. Land Use-Land Cover and Hydrological Modeling: A Review. WIREs Water 2025, 12, e70013. [Google Scholar] [CrossRef]
- Gharahbagh, A.A.; Hajihashemi, V.; Machado, J.J.M.; Tavares, J.M.R.S. Land Cover Classification Model Using Multispectral Satellite Images Based on a Deep Learning Synergistic Semantic Segmentation Network. Sensors 2025, 25, 1988. [Google Scholar] [CrossRef]
- Cuypers, S.; Nascetti, A.; Vergauwen, M. Land Use and Land Cover Mapping with VHR and Multi-Temporal Sentinel-2 Imagery. Remote Sens. 2023, 15, 2501. [Google Scholar] [CrossRef]
- Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality Reduction and Feature Selection for Object-Based Land Cover Classification Based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine. Remote Sens. 2019, 12, 76. [Google Scholar] [CrossRef]
- Belay, H.; Melesse, A.M.; Tegegne, G. Scenario-Based Land Use and Land Cover Change Detection and Prediction Using the Cellular Automata–Markov Model in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Land 2024, 13, 396. [Google Scholar] [CrossRef]
- Tiao, G.C. An Introduction to Multiple Time Series Analysis. Med. Care 1993, 31, YS71–YS74. [Google Scholar]
- Souto, H.G. Time Series Forecasting Models for S&P 500 Financial Turbulence. J. Math. Financ. 2023, 13, 112–129. [Google Scholar]
- Yang, X.; Liu, B. Uncertain Time Series Analysis with Imprecise Observations. Fuzzy Optim. Decis. Mak. 2019, 18, 263–278. [Google Scholar] [CrossRef]
- Bandt, C. Ordinal Time Series Analysis. Ecol. Modell. 2005, 182, 229–238. [Google Scholar] [CrossRef]
- Gardner, E.S.; Mckenzie, E. Forecasting Trends in Time Series. Manage. Sci. 1985, 31, 1237–1246. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Rodrigues, P.C. Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach. Stats 2024, 7, 647–670. [Google Scholar] [CrossRef]
- Eastman, J.R.; Toledano, J. A Short Presentation of CA_MARKOV. In Geomatic Approaches for Modeling Land Change Scenarios; Springer: Cham, Switzerland, 2018; pp. 481–484. [Google Scholar]
- Huayna, G.; Pino-Vargas, E.; Espinoza-Molina, J.; Cruz-Rodríguez, C.; Cabrera-Olivera, F.; Ramos-Fernández, L.; Vera-Barrios, B.; Acosta-Caipa, K.; Ingol-Blanco, E. Glacier, Wetland, and Lagoon Dynamics in the Barroso Mountain Range, Atacama Desert: Past Trends and Future Projections Using CA-Markov. Hydrology 2025, 12, 64. [Google Scholar] [CrossRef]
- Farhan, M.; Wu, T.; Anwar, S.; Yang, J.; Naqvi, S.A.A.; Soufan, W.; Tariq, A. Predicting Land Use Land Cover Dynamics and Land Surface Temperature Changes Using CA-Markov-Chain Models in Islamabad, Pakistan (1992–2042). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 16255–16271. [Google Scholar] [CrossRef]
- Yulianto, F.; Maulana, T.; Khomarudin, M.R. Analysis of the Dynamics of Land Use Change and Its Prediction Based on the Integration of Remotely Sensed Data and CA-Markov Model, in the Upstream Citarum Watershed, West Java, Indonesia. Int. J. Digit. Earth 2019, 12, 1151–1176. [Google Scholar] [CrossRef]
- Asif, M.; Kazmi, J.H.; Tariq, A.; Zhao, N.; Guluzade, R.; Soufan, W.; Almutairi, K.F.; El Sabagh, A.; Aslam, M. Modelling of Land Use and Land Cover Changes and Prediction Using CA-Markov and Random Forest. Geocarto Int. 2023, 38, 2210532. [Google Scholar] [CrossRef]
- Fathizad, H.; Rostami, N.; Faramarzi, M. Detection and Prediction of Land Cover Changes Using Markov Chain Model in Semi-Arid Rangeland in Western Iran. Environ. Monit. Assess. 2015, 187, 629. [Google Scholar] [CrossRef]
- Ghosh, P.; Mukhopadhyay, A.; Chanda, A.; Mondal, P.; Akhand, A.; Mukherjee, S.; Nayak, S.K.; Ghosh, S.; Mitra, D.; Ghosh, T.; et al. Application of Cellular Automata and Markov-Chain Model in Geospatial Environmental Modeling- A Review. Remote Sens. Appl. Soc. Environ. 2017, 5, 64–77. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Batty, M. Modeling Urban Growth with GIS Based Cellular Automata and Least Squares SVM Rules: A Case Study in Qingpu–Songjiang Area of Shanghai, China. Stoch. Environ. Res. Risk Assess. 2016, 30, 1387–1400. [Google Scholar] [CrossRef]
- Koltai, P.; Wu, H.; Noé, F.; Schütte, C. Optimal Data-Driven Estimation of Generalized Markov State Models for Non-Equilibrium Dynamics. Computation 2018, 6, 22. [Google Scholar] [CrossRef]
- Wu, H.; Noé, F. Variational Approach for Learning Markov Processes from Time Series Data. J. Nonlinear Sci. 2020, 30, 23–66. [Google Scholar] [CrossRef]
- Schöttler, S.; Yang, Y.; Pfister, H.; Bach, B. Visualizing and Interacting with Geospatial Networks: A Survey and Design Space. Comput. Graph. Forum 2021, 40, 5–33. [Google Scholar] [CrossRef]
- Gu, Y.; Kraak, M.-J.; Engelhardt, Y.; Mocnik, F.-B. A Classification Scheme for Static Origin–Destination Data Visualizations. Int. J. Geogr. Inf. Sci. 2023, 37, 1970–1997. [Google Scholar] [CrossRef]
- Giabbanelli, P.J.; Baniukiewicz, M. Visual Analytics to Identify Temporal Patterns and Variability in Simulations from Cellular Automata. ACM Trans. Model. Comput. Simul. 2019, 29, 1–26. [Google Scholar] [CrossRef]
- Giordano, A.; de Rango, A.; Spataro, D.; D’Ambrosio, D.; Mastroianni, C.; Folino, G.; Spataro, W. Parallel Execution of Cellular Automata through Space Partitioning: The Landslide Simulation Sciddicas3-Hex Case Study. In Proceedings of the 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), St. Petersburg, Russia, 6–8 March 2017; pp. 505–510. [Google Scholar]
- Folino, G.; Giordano, A.; Mastroianni, C. Scalable Asynchronous Execution of Cellular Automata. AIP Conf. Proc. 2016, 1776, 080006. [Google Scholar]
- Rodríguez Eraso, N.; Armenteras-Pascual, D.; Alumbreros, J.R. Land Use and Land Cover Change in the Colombian Andes: Dynamics and Future Scenarios. J. Land Use Sci. 2013, 8, 154–174. [Google Scholar] [CrossRef]
- Castillón, F.; Rau, P.; Bourrel, L.; Frappart, F. Dynamics and Patterns of Land Cover Change in the Piura River Basin (Peruvian Pacific Slope and Coast) in the Last Two Decades. Front. Remote Sens. 2025, 6, 1529044. [Google Scholar] [CrossRef]
- Pereira, C.O.; Escanilla-Minchel, R.; González, A.C.; Alcayaga, H.; Aguayo, M.; Arias, M.A.; Flores, A.N. Assessment of Future Land Use/Land Cover Scenarios on the Hydrology of a Coastal Basin in South-Central Chile. Sustainability 2022, 14, 16363. [Google Scholar] [CrossRef]
- Dai, Z.; Chang, S.; Zhu, Z.; Duan, J.; Jiang, T.; Wu, W.; Feng, Y.; Yang, G.; Wang, X. Assessment and Multiscenario Simulation of Land Use and Ecosystem Services Interactions in Inner Mongolia. Land Degrad. Dev. 2024, 35, 5611–5625. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Romero Rodríguez, J.; Aguilar-Ávila, J.; Santoyo Cortés, V.H.; Diakite, L. Transiciones Del Cambio de Uso de Suelo En El Estado de Puebla (1980–2016), México. Investig. Geográficas 2022. [Google Scholar] [CrossRef]
- González Soto, F.; Ullón, D.; Yaguachi Alarcón, A.L.; Ramos Alcivar, J.A.; Montenegro Benalcázar, V.E.; Loján Córdova, J.I. Análisis Multitemporal de Cambios de Uso Del Suelo En La Isla Santa Cruz, Archipiélago de Las Galápagos, Periodo 1991–2023. Rev. Cienc. Tecnol. 2024, 17, 1–9. [Google Scholar] [CrossRef]
- Scott, B.; Baldwin, A.H.; Yarwood, S.A. Quantification of Potential Methane Emissions Associated with Organic Matter Amendments Following Oxic-Soil Inundation. Biogeosciences 2022, 19, 1151–1164. [Google Scholar] [CrossRef]
- Robison, A.L.; Deluigi, N.; Rolland, C.; Manetti, N.; Battin, T. Glacier Loss and Vegetation Expansion Alter Organic and Inorganic Carbon Dynamics in High-Mountain Streams. Biogeosciences 2023, 20, 2301–2316. [Google Scholar] [CrossRef]
- Emmer, A.; Vilímek, V. New Method for Assessing the Susceptibility of Glacial Lakes to Outburst Floods in the Cordillera Blanca, Peru. Hydrol. Earth Syst. Sci. 2014, 18, 3461–3479. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Guo, H.; Yi, L.; Zeng, J.; Li, B. Glacial Lake Area Changes in High Mountain Asia during 1990–2020 Using Satellite Remote Sensing. Research 2022, 2022, 9821275. [Google Scholar] [CrossRef]
- Gao, J.-G.; Zhang, Y.-L.; Liu, L.-S.; Wang, Z.-F. Climate Change as the Major Driver of Alpine Grasslands Expansion and Contraction: A Case Study in the Mt. Qomolangma (Everest) National Nature Preserve, Southern Tibetan Plateau. Quat. Int. 2014, 336, 108–116. [Google Scholar] [CrossRef]
- Zhu, K.; Song, Y.; Lesage, J.C.; Luong, J.C.; Bartolome, J.W.; Chiariello, N.R.; Dudney, J.; Field, C.B.; Hallett, L.M.; Hammond, M.; et al. Rapid Shifts in Grassland Communities Driven by Climate Change. Nat. Ecol. Evol. 2024, 8, 2252–2264. [Google Scholar] [CrossRef]
- Li, P.; Feng, Z. Extent and Area of Swidden in Montane Mainland Southeast Asia: Estimation by Multi-Step Thresholds with Landsat-8 OLI Data. Remote Sens. 2016, 8, 44. [Google Scholar] [CrossRef]
- Körner, C. The Use of ‘Altitude’ in Ecological Research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q. Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Carilla, J.; Aráoz, E.; Foguet, J.; Casagranda, E.; Halloy, S.; Grau, A. Hydroclimate and Vegetation Variability of High Andean Ecosystems. Front. Plant Sci. 2023, 13, 1067096. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Ma, X.; Xie, M.; Bai, H. Effect of Altitude and Topography on Vegetation Phenological Changes in the Niubeiliang Nature Reserve of Qinling Mountains, China. Forests 2022, 13, 1229. [Google Scholar] [CrossRef]
- Carbajal, M.; Ramírez, D.A.; Turin, C.; Schaeffer, S.M.; Konkel, J.; Ninanya, J.; Rinza, J.; De Mendiburu, F.; Zorogastua, P.; Villaorduña, L.; et al. From Rangelands to Cropland, Land-Use Change and Its Impact on Soil Organic Carbon Variables in a Peruvian Andean Highlands: A Machine Learning Modeling Approach. Ecosystems 2024, 27, 899–917. [Google Scholar] [CrossRef]
- Malek, Ž.; Verburg, P.H.; Geijzendorffer, I.R.; Bondeau, A.; Cramer, W. Global Change Effects on Land Management in the Mediterranean Region. Glob. Environ. Change 2018, 50, 238–254. [Google Scholar] [CrossRef]
- Luan, C.; Liu, R. A Comparative Study of Various Land Use and Land Cover Change Models to Predict Ecosystem Service Value. Int. J. Environ. Res. Public Health 2022, 19, 16484. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Wu, L.; Miao, H.; Liu, J.; Jiang, K.; Ding, H.; Gao, W.; Liu, T. Prediction of Land Use for the next 30 Years Using the PLUS Model’s Multi-Scenario Simulation in Guizhou Province, China. Sci. Rep. 2024, 14, 13143. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving Land-Use Change Modeling by Integrating ANN with Cellular Automata-Markov Chain Model. Heliyon 2020, 6, e05092. [Google Scholar] [CrossRef]
Data | Year | Product Identifier | Sensing Time (hh:mm:ss) | Cloud Cover % | Patch/Row |
---|---|---|---|---|---|
Landsat 5 | 1984 | LANDSAT/LT05/C02/T1_TOA/LT05_002072_19840715 | 14:10:21 | 10 | 02/72 |
LANDSAT/LT05/C02/T1_TOA/LT05_003072_19840620 | 14:16:12 | 46 | 03/72 | ||
Landsat 5 | 1993 | LANDSAT/LT05/C02/T1_TOA/LT05_002072_19930606 | 14:04:12 | 0 | 02/72 |
LANDSAT/LT05/C02/T1_TOA/LT05_002072_19930708 | 14:04:02 | 1 | |||
LANDSAT/LT05/C02/T1_TOA/LT05_003071_19930629 | 14:09:51 | 0 | 03/71 | ||
LANDSAT/LT05/C02/T1_TOA/LT05_003071_19930715 | 14:09:49 | 4 | |||
Landsat 5 | 2003 | LANDSAT/LT05/C02/T1_TOA/LT05_002072_20030618 | 14:17:31 | 6 | 02/72 |
LANDSAT/LT05/C02/T1_TOA/LT05_002072_20030704 | 14:17:52 | 0 | |||
LANDSAT/LT05/C02/T1_TOA/LT05_003071_20030711 | 14:23:46 | 1 | 03/71 | ||
LANDSAT/LT05/C02/T1_TOA/LT05_003071_20030727 | 14:24:04 | 4 | |||
Landsat 8 | 2013 | LANDSAT/LC08/C02/T1_TOA/LC08_002072_20130629 | 14:43:36 | 2.72 | 02/72 |
LANDSAT/LC08/C02/T1_TOA/LC08_002072_20130715 | 14:43:37 | 18.09 | |||
LANDSAT/LC08/C02/T1_TOA/LC08_003071_20130620 | 14:49:20 | 2.65 | 03/71 | ||
LANDSAT/LC08/C02/T1_TOA/LC08_003071_20130706 | 14:49:24 | 8.82 | |||
Landsat 8 | 2023 | LANDSAT/LC08/C02/T1_TOA/LC08_002072_20230609 | 14:41:03 | 4.19 | |
LANDSAT/LC08/C02/T1_TOA/LC08_002072_20230625 | 14:41:10 | 5.56 | 02/72 | ||
LANDSAT/LC08/C02/T1_TOA/LC08_002072_20230711 | 14:41:20 | 5.13 | |||
LANDSAT/LC08/C02/T1_TOA/LC08_003071_20230531 | 14:46:44 | 0.22 | |||
LANDSAT/LC08/C02/T1_TOA/LC08_003071_20230616 | 14:46:53 | 0.22 | 03/71 | ||
LANDSAT/LC08/C02/T1_TOA/LC08_003071_20230718 | 14:47:07 | 0.26 |
Dataset | Source | Resolution | Thematic Layers |
---|---|---|---|
Shuttle Radar Topography Mission | Google Earth Engine (https://developers.google.com/earth-engine/datasets, accessed on 15 January 2020) | 30 m | Elevation, Slope, Aspect, Shape Index, Curvature Horizontal, Curvature Vertical, Topographic Position Index, Terrain Ruggedness Index |
Landsat 8 | Google Earth Engine Código Fuente (https://code.earthengine.google.com/?accept_repo=users/sofiaermida/landsat_smw_lst, accessed on 15 January 2020) | 30 m | Land Surface Temperature |
TerraClimate | Google Earth Engine (https://developers.google.com/earth-engine/datasets, accessed on 15 January 2025) | 4638.3 m | Annual precipitation, Shortwave Radiation |
Land Cover Type | Index Used | Index Formula | Threshold Applied | Additional Criteria |
---|---|---|---|---|
Glacier | NDSI | NDSI > 0.4 | Empirical thresholds adjusted per sensor (NIR > 0.11, RED > 0.10); visual correction for debris-covered areas | |
Lagoon | NDWI | NDWI > 0.2 | Slope ≤ 20 degrees and DEM > 3800 m.a.s.l. | |
Wetland | NDVI + NDII | NDVI > 0.43 0.02 < NDII < 0.76 | DEM > 3800 m.a.s.l. (SRTM); combined condition (NDVI ∧ NDII) | |
Agriculture | NDVI + DEM | NDVI > 0.20 | DEM < 3800 m.a.s.l. (excludes high Andean ecosystems) | |
Grassland | NDVI + DEM | NDVI > 0.20 | DEM ≥ 3800 m.a.s.l.; excludes wetland areas (wetland mask) |
Period | Category | Bare Soil | Wetland | Glacier | Lagoons | Grassland | Agriculture |
---|---|---|---|---|---|---|---|
1984–1993 | Bare soil | 0.980 | 0.000 | 0.000 | 0.000 | 0.016 | 0.004 |
Wetland | 0.001 | 0.320 | 0.000 | 0.000 | 0.679 | 0.000 | |
Glacier | 0.802 | 0.000 | 0.198 | 0.000 | 0.000 | 0.000 | |
Lagoons | 0.323 | 0.000 | 0.000 | 0.668 | 0.009 | 0.000 | |
Grassland | 0.103 | 0.006 | 0.000 | 0.000 | 0.891 | 0.000 | |
Agriculture | 0.201 | 0.000 | 0.000 | 0.000 | 0.000 | 0.799 | |
1993–2003 | Bare soil | 0.971 | 0.000 | 0.005 | 0.002 | 0.019 | 0.002 |
Wetland | 0.000 | 0.895 | 0.000 | 0.000 | 0.105 | 0.000 | |
Glacier | 0.152 | 0.000 | 0.848 | 0.000 | 0.000 | 0.000 | |
Lagoons | 0.047 | 0.000 | 0.000 | 0.844 | 0.108 | 0.000 | |
Grassland | 0.150 | 0.057 | 0.000 | 0.013 | 0.781 | 0.000 | |
Agriculture | 0.402 | 0.000 | 0.000 | 0.000 | 0.000 | 0.598 | |
2003–2013 | Bare soil | 0.938 | 0.000 | 0.003 | 0.001 | 0.049 | 0.009 |
Wetland | 0.000 | 0.838 | 0.000 | 0.000 | 0.162 | 0.000 | |
Glacier | 0.400 | 0.000 | 0.599 | 0.001 | 0.000 | 0.000 | |
Lagoons | 0.029 | 0.000 | 0.000 | 0.970 | 0.001 | 0.000 | |
Grassland | 0.033 | 0.050 | 0.001 | 0.026 | 0.891 | 0.000 | |
Agriculture | 0.162 | 0.000 | 0.000 | 0.000 | 0.000 | 0.838 | |
2013–2023 | Bare soil | 0.962 | 0.000 | 0.000 | 0.000 | 0.032 | 0.006 |
Wetland | 0.000 | 0.783 | 0.000 | 0.000 | 0.217 | 0.000 | |
Glacier | 0.714 | 0.000 | 0.286 | 0.000 | 0.000 | 0.000 | |
Lagoons | 0.395 | 0.000 | 0.000 | 0.573 | 0.031 | 0.000 | |
Grassland | 0.082 | 0.012 | 0.000 | 0.000 | 0.906 | 0.000 | |
Agriculture | 0.229 | 0.000 | 0.000 | 0.000 | 0.000 | 0.771 |
Year | LULC | BS | W | GL | L | GH | A | Total | Accuracy User | Omission Error |
---|---|---|---|---|---|---|---|---|---|---|
2023 | Bare soil (BS) | 84 | 0 | 0 | 0 | 6 | 0 | 90 | 0.93 | 0.07 |
Wetland (W) | 0 | 59 | 0 | 0 | 1 | 0 | 60 | 0.98 | 0.02 | |
Glacier (GL) | 0 | 0 | 60 | 0 | 0 | 0 | 60 | 1.00 | 0.00 | |
Lagoons (L) | 0 | 0 | 0 | 50 | 0 | 0 | 50 | 1.00 | 0.00 | |
Grassland/Herbaceous (GH) | 1 | 0 | 0 | 0 | 69 | 0 | 70 | 0.99 | 0.01 | |
Agriculture (A) | 1 | 0 | 0 | 0 | 6 | 53 | 60 | 0.88 | 0.12 | |
Total | 86 | 59 | 60 | 50 | 82 | 53 | 390 | |||
Producer’s Accuracy | 0.98 | 1.00 | 1.00 | 1.00 | 0.84 | 1.00 | 0.96 = Overall Accuracy | |||
Omission Error | 0.02 | 0.00 | 0.00 | 0.00 | 0.16 | 0.00 | 0.95 = Kappa Coefficient | |||
2013 | Bare soil (BS) | 86 | 0 | 1 | 0 | 3 | 0 | 90 | 0.96 | 0.04 |
Wetland (W) | 0 | 51 | 0 | 0 | 9 | 0 | 60 | 0.85 | 0.15 | |
Glacier (GL) | 1 | 0 | 59 | 0 | 0 | 0 | 60 | 0.98 | 0.02 | |
Lagoons (L) | 0 | 0 | 0 | 50 | 0 | 0 | 50 | 1.00 | 0.00 | |
Grassland/Herbaceous (GH) | 5 | 0 | 0 | 1 | 64 | 0 | 70 | 0.91 | 0.09 | |
Agriculture (A) | 1 | 0 | 0 | 0 | 8 | 51 | 60 | 0.85 | 0.15 | |
Total | 93 | 51 | 60 | 51 | 84 | 51 | 390 | |||
Producer’s Accuracy | 0.92 | 1.00 | 0.98 | 0.98 | 0.76 | 1.00 | 0.93 = Overall Accuracy | |||
Omission Error | 0.08 | 0.00 | 0.02 | 0.02 | 0.24 | 0.00 | 0.91 = Kappa Coefficient | |||
2003 | Bare soil (BS) | 82 | 0 | 0 | 0 | 6 | 2 | 90 | 0.91 | 0.09 |
Wetland (W) | 0 | 58 | 0 | 0 | 2 | 0 | 60 | 0.97 | 0.03 | |
Glacier (GL) | 2 | 0 | 58 | 0 | 0 | 0 | 60 | 0.97 | 0.03 | |
Lagoons (L) | 0 | 0 | 0 | 50 | 0 | 0 | 50 | 1.00 | 0.00 | |
Grassland/Herbaceous (GH) | 1 | 2 | 0 | 1 | 66 | 0 | 70 | 0.94 | 0.06 | |
Agriculture (A) | 0 | 0 | 0 | 0 | 1 | 59 | 60 | 0.98 | 0.02 | |
Total | 85 | 60 | 58 | 51 | 75 | 61 | 390 | |||
Producer’s Accuracy | 0.96 | 0.97 | 1.00 | 0.98 | 0.88 | 0.97 | 0.96 = Overall Accuracy | |||
Omission Error | 0.04 | 0.03 | 0.00 | 0.02 | 0.12 | 0.03 | 0.95 = Kappa Coefficient | |||
1993 | Bare soil (BS) | 83 | 0 | 0 | 0 | 7 | 0 | 90 | 0.92 | 0.08 |
Wetland (W) | 0 | 59 | 0 | 0 | 1 | 0 | 60 | 0.98 | 0.02 | |
Glacier (GL) | 0 | 0 | 60 | 0 | 0 | 0 | 60 | 1.00 | 0.00 | |
Lagoons (L) | 0 | 0 | 0 | 50 | 0 | 0 | 50 | 1.00 | 0.00 | |
Grassland/Herbaceous (GH) | 3 | 1 | 0 | 0 | 66 | 0 | 70 | 0.94 | 0.06 | |
Agriculture (A) | 0 | 0 | 0 | 0 | 4 | 56 | 60 | 0.93 | 0.07 | |
Total | 86 | 60 | 60 | 50 | 78 | 56 | 390 | |||
Producer’s Accuracy | 0.97 | 0.98 | 1.00 | 1.00 | 0.85 | 1.00 | 0.96 = Overall Accuracy | |||
Omission Error | 0.03 | 0.02 | 0.00 | 0.00 | 0.15 | 0.00 | 0.95 = Kappa Coefficient | |||
1984 | Bare soil (BS) | 85 | 0 | 0 | 0 | 3 | 2 | 90 | 0.94 | 0.06 |
Wetland (W) | 0 | 56 | 0 | 0 | 4 | 0 | 60 | 0.93 | 0.07 | |
Glacier (GL) | 0 | 0 | 60 | 0 | 0 | 0 | 60 | 1.00 | 0.00 | |
Lagoons (L) | 0 | 0 | 0 | 50 | 0 | 0 | 50 | 1.00 | 0.00 | |
Grassland/Herbaceous (GH) | 4 | 1 | 0 | 0 | 65 | 0 | 70 | 0.93 | 0.07 | |
Agriculture (A) | 0 | 0 | 0 | 0 | 4 | 56 | 60 | 0.93 | 0.07 | |
Total | 89 | 57 | 60 | 50 | 76 | 58 | 390 | |||
Producer’s Accuracy | 0.96 | 0.98 | 1.00 | 1.00 | 0.86 | 0.97 | 0.95 = Overall Accuracy | |||
Omission Error | 0.04 | 0.02 | 0.00 | 0.00 | 0.14 | 0.03 | 0.94 = Kappa Coefficient |
Kappa Hat Value | Interpretation of Agreement |
---|---|
0.81–1.00 | Near-perfect agreement |
0.61–0.80 | Strong level of agreement |
0.41–0.60 | Moderate agreement |
0.21–0.40 | Acceptable but limited agreement |
0.01–0.20 | Minimal agreement |
<0.00 | Discordance or poor match |
Years | Wetland | Var. | Glacier | Var. | Lag | Var. | Grass | Var. | Agric | Var. |
---|---|---|---|---|---|---|---|---|---|---|
1984 | 2.93 | 19.74 | 16.87 | 57.87 | 32.8 | |||||
1985 | 3.25 | −0.32 | 22.6 | −2.86 | 19.12 | −2.25 | 110.89 | −53.02 | 48.48 | −15.68 |
1986 | 3.73 | −0.48 | 15.82 | 6.78 | 23.57 | −4.45 | 105.29 | 5.6 | 31.73 | 16.75 |
1987 | 6.7 | −2.97 | 1.62 | 14.2 | 19.3 | 4.27 | 56.51 | 48.78 | 22.52 | 9.21 |
1988 | 4.79 | 1.91 | 4.17 | −2.55 | 16.67 | 2.63 | 81.91 | −25.4 | 23.83 | −1.31 |
1989 | 5.31 | −0.52 | 13.32 | −9.15 | 16.69 | −0.02 | 87.57 | −5.66 | 33.77 | −9.94 |
1990 | 3.46 | 1.85 | 2.5 | 10.82 | 9.76 | 6.93 | 57.19 | 30.38 | 23.58 | 10.19 |
1991 | 3.39 | 0.07 | 6.88 | −4.38 | 12.77 | −3.01 | 90.49 | −33.3 | 29.29 | −5.71 |
1992 | 0.23 | 3.16 | 0.06 | 6.82 | 8.65 | 4.12 | 53.5 | 36.99 | 27.76 | 1.53 |
1993 | 1.29 | −1.06 | 3.94 | −3.88 | 11.29 | −2.64 | 97.89 | −44.39 | 35.83 | −8.07 |
1994 | 3.53 | −2.24 | 8.47 | −4.53 | 15.2 | −3.91 | 122.86 | −24.97 | 40.54 | −4.71 |
1995 | 4.73 | −1.2 | 2.34 | 6.13 | 8.71 | 6.49 | 133.6 | −10.74 | 39.32 | 1.22 |
1996 | 3.18 | 1.55 | 2.75 | −0.41 | 9.87 | −1.16 | 101.78 | 31.82 | 27.25 | 12.07 |
1997 | 3.96 | −0.78 | 12.69 | −9.94 | 16.55 | −6.68 | 120.21 | −18.43 | 34.31 | −7.06 |
1998 | 5.55 | −1.59 | 0.25 | 12.44 | 9.07 | 7.48 | 121.9 | −1.69 | 25.18 | 9.13 |
1999 | 2.96 | 2.59 | 25.23 | −24.98 | 17.74 | −8.67 | 106.57 | 15.33 | 36.26 | −11.08 |
2000 | 3.96 | −1 | 11.25 | 13.98 | 17.56 | 0.18 | 106.59 | −0.02 | 29.29 | 6.97 |
2001 | 3.49 | 0.47 | 24.83 | −13.58 | 21.38 | −3.82 | 109.41 | −2.82 | 36.56 | −7.27 |
2002 | 10.39 | −6.9 | 23.79 | 1.04 | 20.7 | 0.68 | 143.42 | −34.01 | 39.55 | −2.99 |
2003 | 6.74 | 3.65 | 12.2 | 11.59 | 14.91 | 5.79 | 111.01 | 32.41 | 25.54 | 14.01 |
2004 | 4.24 | 2.5 | 6.01 | 6.19 | 11.29 | 3.62 | 108.45 | 2.56 | 23.05 | 2.49 |
2005 | 3.91 | 0.33 | 2.45 | 3.56 | 10.38 | 0.91 | 105.15 | 3.3 | 36.09 | −13.04 |
2006 | 5.69 | −1.78 | 8.77 | −6.32 | 18.8 | −8.42 | 124.99 | −19.84 | 31.08 | 5.01 |
2007 | 5.62 | 0.07 | 4.59 | 4.18 | 15.74 | 3.06 | 105.3 | 19.69 | 26.19 | 4.89 |
2008 | 4.21 | 1.41 | 0.96 | 3.63 | 10.52 | 5.22 | 111.9 | −6.6 | 31.81 | −5.62 |
2009 | 4.09 | 0.12 | 5.45 | −4.49 | 13.46 | −2.94 | 104.22 | 7.68 | 33.71 | −1.9 |
2010 | 3.93 | 0.16 | 0.35 | 5.1 | 9.34 | 4.12 | 71.03 | 33.19 | 28.97 | 4.74 |
2011 | 4.58 | −0.65 | 10.58 | −10.23 | 11.57 | −2.23 | 102.53 | −31.5 | 32.16 | −3.19 |
2012 | 8.3 | −3.72 | 21.39 | −10.81 | 19.44 | −7.87 | 175.39 | −72.86 | 45.12 | −12.96 |
2013 | 11.18 | −2.88 | 12.02 | 9.37 | 19.69 | −0.25 | 182.85 | −7.46 | 36.91 | 8.21 |
2014 | 8.16 | 3.02 | 0.07 | 11.95 | 11.48 | 8.21 | 153.36 | 29.49 | 29.37 | 7.54 |
2015 | 11.53 | −3.37 | 9.49 | −9.42 | 14.61 | −3.13 | 210.84 | −57.48 | 49.41 | −20.04 |
2016 | 10.16 | 1.37 | 2.2 | 7.29 | 9.89 | 4.72 | 194.66 | 16.18 | 34.14 | 15.27 |
2017 | 8 | 2.16 | 4.77 | −2.57 | 9.26 | 0.63 | 177.32 | 17.34 | 34.19 | −0.05 |
2018 | 8.32 | −0.32 | 4.51 | 0.26 | 9.35 | −0.09 | 119.8 | 57.52 | 17.76 | 16.43 |
2019 | 9.58 | −1.26 | 2.23 | 2.28 | 10.79 | −1.44 | 202.02 | −82.22 | 30.43 | −12.67 |
2020 | 12.35 | −2.77 | 5.94 | −3.71 | 18.35 | −7.56 | 253.37 | −51.35 | 46.86 | −16.43 |
2021 | 10.78 | 1.57 | 7.11 | −1.17 | 14.36 | 3.99 | 216.27 | 37.1 | 26.84 | 20.02 |
2022 | 8.7 | 2.08 | 1.56 | 5.55 | 14.68 | −0.32 | 159.73 | 56.54 | 26.59 | 0.25 |
2023 | 10.96 | −2.26 | 3.95 | −2.39 | 11.45 | 3.23 | 220.31 | −60.58 | 37.29 | −10.7 |
Mean | −0.20 | 0.40 | 0.13 | −4.16 | −0.11 | |||||
2033 | 10.94 | 0.02 | 3.42 | 0.53 | 11.12 | 0.33 | 257.65 | −37.34 | 37.73 | −0.44 |
2043 | 11.2 | −0.26 | 3.19 | 0.23 | 11.14 | −0.02 | 294.8 | −37.15 | 38.15 | −0.42 |
2053 | 11.32 | −0.12 | 3.13 | 0.06 | 11.24 | −0.1 | 331.62 | −36.82 | 38.59 | −0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huayna, G.; Pocco, V.; Pino-Vargas, E.; Franco-León, P.; Espinoza-Molina, J.; Cabrera-Olivera, F.; Vera-Barrios, B.; Acosta-Caipa, K.; Ramos-Fernández, L.; Ingol-Blanco, E. Historical Land Cover Dynamics and Projected Changes in the High Andean Zone of the Locumba Basin: A Predictive Approach Using Remote Sensing and Artificial Neural Network—Cellular Automata Model. Land 2025, 14, 1442. https://doi.org/10.3390/land14071442
Huayna G, Pocco V, Pino-Vargas E, Franco-León P, Espinoza-Molina J, Cabrera-Olivera F, Vera-Barrios B, Acosta-Caipa K, Ramos-Fernández L, Ingol-Blanco E. Historical Land Cover Dynamics and Projected Changes in the High Andean Zone of the Locumba Basin: A Predictive Approach Using Remote Sensing and Artificial Neural Network—Cellular Automata Model. Land. 2025; 14(7):1442. https://doi.org/10.3390/land14071442
Chicago/Turabian StyleHuayna, German, Victor Pocco, Edwin Pino-Vargas, Pablo Franco-León, Jorge Espinoza-Molina, Fredy Cabrera-Olivera, Bertha Vera-Barrios, Karina Acosta-Caipa, Lía Ramos-Fernández, and Eusebio Ingol-Blanco. 2025. "Historical Land Cover Dynamics and Projected Changes in the High Andean Zone of the Locumba Basin: A Predictive Approach Using Remote Sensing and Artificial Neural Network—Cellular Automata Model" Land 14, no. 7: 1442. https://doi.org/10.3390/land14071442
APA StyleHuayna, G., Pocco, V., Pino-Vargas, E., Franco-León, P., Espinoza-Molina, J., Cabrera-Olivera, F., Vera-Barrios, B., Acosta-Caipa, K., Ramos-Fernández, L., & Ingol-Blanco, E. (2025). Historical Land Cover Dynamics and Projected Changes in the High Andean Zone of the Locumba Basin: A Predictive Approach Using Remote Sensing and Artificial Neural Network—Cellular Automata Model. Land, 14(7), 1442. https://doi.org/10.3390/land14071442