The Catalyst to Activate Rural Economic Vitality: The Impact of Land Transfer on the Consumption Behaviour of Older Farmers in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Land Transfer-Out and Land Transfer-In and Consumption Behaviour of Older Farmers
2.2. The Mediating Role of Income
2.3. Two-Way Land Transfer and Consumption Behaviour of Older Farmers
2.4. Data and Processing
2.5. Variable Selection
2.5.1. Dependent Variables
2.5.2. Independent Variables
2.5.3. Control Variables
2.5.4. Mediating Variable
2.6. Model Construction
3. Results
3.1. Descriptive Statistics of the Variables
3.2. The Impact of Land Transfer on the Consumption Behaviour of Older Farmers
3.3. Robustness Tests
3.3.1. Robustness Test 1: Replacement of Independent Variables
3.3.2. Robustness Test 2: Propensity Score Matching
3.3.3. Robustness Test 3: Instrumental Variable
3.3.4. Robustness Test 4: Subsample Tests
3.4. Mechanism Analysis
3.5. Interaction Term: The Effect of Two-Way Land Transfer on the Consumption Behaviour of Older Farmers
4. Discussion
4.1. Land Transfer Has a Positive Impact on the Consumption Behaviour of Older Farmers
4.2. Income Mediates the Impact of Land Transfer on the Consumption Behaviour of Older Farmers
4.3. Heterogeneity Exists in the Impact of Land Transfer on the Consumption Behaviour of Older Farmers
4.4. Implications for Land Transfer Policy Reforms
5. Conclusions and Limitations
5.1. Conclusions
5.2. Limitations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, H.; Xu, J.G.; Zhang, X. The role of housing wealth, financial wealth, and social welfare in elderly households’ consumption behaviors in China. Cities 2020, 96, 102437. [Google Scholar] [CrossRef]
- Liu, J.Z.; Fang, Y.G.; Wang, G.; Liu, B.C.; Wang, R.R. The aging of farmers and its challenges for labor-intensive agriculture in China: A perspective on farmland transfer plans for farmers’ retirement. J. Rural Stud. 2023, 100, 103013. [Google Scholar] [CrossRef]
- Yang, F.; Pan, Y.; Huang, Y.J. Chinese Older Adults’ Consumption Expenditure Structure and Its Determinants. Popul. Res. 2020, 44, 60–79. (In Chinese) [Google Scholar]
- Nie, R.; Yang, D.; Shen, D.J. An Empirical Study on the Influence of China’s Rural Income Brackets on Household Consumption Structure-Micro Evidence Based on CFPS Data. J. Northeast. Univ. (Soc. Sci.) 2020, 22, 29–37. [Google Scholar] [CrossRef]
- Zagata, L.; Sutherland, L.A. Deconstructing the ‘young farmer problem in Europe’: Towards a research agenda. J. Rural Stud. 2015, 38, 39–51. [Google Scholar] [CrossRef]
- Jayne, T.S.; Chamberlin, J.; Traub, L.; Sitko, N.; Muyanga, M.; Yeboah, F.K.; Anseeuw, W.; Chapoto, A.; Wineman, A.; Nkonde, C.; et al. Africa’s changing farm size distribution patterns: The rise of medium-scale farms. Agric. Econ. 2016, 47, 197–214. [Google Scholar] [CrossRef]
- Sun, J.H.; Cheng, P.; Liu, Z.X. Social security, intergenerational care, and cultivated land renting out behavior of elderly farmers: Findings from the china health and retirement longitudinal survey. Land 2023, 12, 392. [Google Scholar] [CrossRef]
- Yin, Z.C.; Wang, R. The Impact of Land Transfer on the Farmers’ Entrepreneurship: A Further Analysis Based on CHFS Data. J. Yunnan Minzu Univ. (Philos. Soc. Sci. Ed.) 2025, 24, 115–127. [Google Scholar] [CrossRef]
- Li, G.; Cui, X.F.; Pan, L.; Wang, Y.F. Land transfer and rural household consumption diversity: Promoting or inhibiting? Land 2023, 12, 203. [Google Scholar] [CrossRef]
- Bryceson, D.F. African rural labour, income diversification & livelihood approaches: A long-term development perspective. Rev. Afr. Polit. Econ. 1999, 26, 171–189. [Google Scholar] [CrossRef]
- Niehof, A. The significance of diversification for rural livelihood systems. Food Policy 2004, 29, 321–338. [Google Scholar] [CrossRef]
- Liu, Z.M.; Rommel, J.; Feng, S.Y.; Hanisch, M. Can land transfer through land cooperatives foster off-farm employment in China? China Econ. Rev. 2017, 45, 35–44. [Google Scholar] [CrossRef]
- Wang, B.; Shao, X.Y.; Yang, X.; Xu, H.H. How does land transfer impact rural household income disparity? An empirical analysis based on the micro-perspective of farmers in China. Front. Sustain. Food Syst. 2023, 7, 1224152. [Google Scholar] [CrossRef]
- Zhao, G.; Li, F. An empirical analysis of the role of pension insurance in promoting land transfer. China Popul. Resour. Environ. 2014, 24, 118–128. [Google Scholar]
- Zhu, J.; Jin, S.; Tang, Z.; Awokuse, T. The Effect of Pension Income on Land Transfers: Evidence from Rural China. Econ. Dev. Cult. Change 2022, 71, 333–371. [Google Scholar] [CrossRef]
- Sengupta, N. Fragmented landholding, productivity, and resilience management. Environ. Dev. Econ. 2006, 11, 507–532. [Google Scholar] [CrossRef]
- Teshome, A.; Graaff, J.D.; Ritsema, C.; Kassie, M. Farmers’ perceptions about the influence of land quality, land fragmentation and tenure systems on sustainable land management in the north western Ethiopian highlands. Land Degrad. Dev. 2016, 27, 884–898. [Google Scholar] [CrossRef]
- Bao, H.J.; Han, L.; Wu, H.; Zeng, X. What affects the “house-for-pension” scheme consumption behavior of land-lost farmers in China? Habitat Int. 2021, 116, 102415. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Meng, W.R. Bilateral effect of aging population on consumption structure: Evidence from China. Front. Public Health 2022, 10, 941485. [Google Scholar] [CrossRef]
- Thow, A.M.; Lencucha, R.A.; Rooney, K.; Colagiuri, S.; Lenzen, M. Implications for farmers of measures to reduce sugars consumption. Bull. World Health Organ. 2020, 99, 41. [Google Scholar] [CrossRef]
- Szmigin, I.; Maddock, S.; Carrigan, M. Conceptualising community consumption: Farmers’ markets and the older consumer. Br. Food J. 2003, 105, 542–550. [Google Scholar] [CrossRef]
- Shittu, A.M. Off-farm labour supply and production efficiency of farm household in rural Southwest Nigeria. Agric. Food Econ. 2014, 2, 8. [Google Scholar] [CrossRef]
- Lu, H.W.; Gao, M.J.; Li, G.J.; Li, T.T.; Luo, Q.Y. Has the Household Old-Age Burden Affected Farm Household Incomes? Evidence from a Survey of Chinese Farm Households. Agriculture 2024, 14, 687. [Google Scholar] [CrossRef]
- Wang, G.Y.; Hao, Y.Z.; Ma, J.W. Family income level, income structure, and dietary imbalance of elderly households in rural China. Foods 2024, 13, 190. [Google Scholar] [CrossRef]
- Xu, Y.B. Family support for old people in rural China. Soc. Policy Adm. 2001, 35, 307–320. [Google Scholar] [CrossRef]
- Lian, J.W.; Yen, D.C. Online shopping drivers and barriers for older adults: Age and gender differences. Comput. Hum. Behav. 2014, 37, 133–143. [Google Scholar] [CrossRef]
- Tang, W.C.; Zhu, J. Informality and rural industry: Rethinking the impacts of E-Commerce on rural development in China. J. Rural Stud. 2020, 75, 20–29. [Google Scholar] [CrossRef]
- Wegren, S.K. State withdrawal and the impact of marketization on rural Russia. Policy Stud. J. 2000, 28, 46–67. [Google Scholar] [CrossRef]
- Mao, Q.Q.; Ren, Y.J.; Loy, J.P. Price bubbles in agricultural commodity markets and contributing factors: Evidence for corn and soybeans in China. China Agric. Econ. Rev. 2021, 13, 22–53. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, C.C. The power of social pensions: Evidence from China’s new rural pension scheme. Am. Econ. J.-Appl. Econ. 2021, 13, 179–205. [Google Scholar] [CrossRef]
- Shi, X.J. Land reallocation responses to China’s New Rural Pension Scheme: Evidence from a regression discontinuity design. J. Rural Stud. 2022, 92, 35–49. [Google Scholar] [CrossRef]
- Goins, R.T.; Williams, K.A.; Carter, M.W.; Spencer, S.M.; Solovieva, T.M.A. Perceived barriers to health care access among rural older adults: A qualitative study. J. Rural Health 2005, 21, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Douthit, N.; Kiv, S.; Dwolatzky, T.; Biswas, S. Exposing some important barriers to health care access in the rural USA. Public Health 2015, 129, 611–620. [Google Scholar] [CrossRef]
- Marx, I.; Salanauskaite, L.; Verbist, G. For the poor, but not only the poor: On optimal pro-poorness in redistributive policies. Soc. Forces 2016, 95, 1–24. [Google Scholar] [CrossRef]
- Huo, C.J.; Chen, L.M. Research on the impact of land circulation on the income gap of rural households: Evidence from CHIP. Land 2021, 10, 781. [Google Scholar] [CrossRef]
- Cai, M. Land for welfare in China. Land Use Policy 2016, 55, 1–12. [Google Scholar] [CrossRef]
- Lloyd-Sherlock, P. Old age and poverty in developing countries: New policy challenges. World Dev. 2000, 28, 2157–2168. [Google Scholar] [CrossRef]
- Shefrin, H.M.; Thaler, R.H. The behavioral life-cycle hypothesis. Econ. Inq. 1988, 26, 609–643. [Google Scholar] [CrossRef]
- Nolte, K. Large-scale agricultural investments under poor land governance in Zambia. Land Use Policy 2014, 38, 698–706. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Jiang, S.Z. Optimisation path of rural land rights allocation and unified-decentralized structure of rights. Issues Agric. Econ. 2025, 4, 79–91. (In Chinese) [Google Scholar]
- Guo, J.P.; Qu, S.; Xia, Y.; Lv, K.Y. Research on income distributive effects of farmland circulation. China Popul. Resour. Environ. 2018, 28, 160–169. (In Chinese) [Google Scholar]
- Deininger, K.; Jin, S.Q. The potential of land rental markets in the process of economic development: Evidence from China. J. Dev. Econ. 2005, 78, 241–270. [Google Scholar] [CrossRef]
- Jin, S.Q.; Jayne, T.S. Land rental markets in Kenya: Implications for efficiency, equity, household income, and poverty. Land Econ. 2013, 89, 246–271. [Google Scholar] [CrossRef]
- Crotty, J.R. Neoclassical and Keynesian approaches to the theory of investment. J. Post Keynes. Econ. 1992, 14, 483–496. [Google Scholar] [CrossRef]
- Carter, M.R.; Yao, Y. Local versus global separability in agricultural household models: The factor price equalization effect of land transfer rights. Am. J. Agric. Econ. 2022, 84, 702–715. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, S.Y.; Heerink, N.; Qu, F.T.; Kuyvenhoven, A. How do land rental markets affect household income? Evidence from rural Jiangsu, PR China. Land Use Policy 2018, 74, 151–165. [Google Scholar] [CrossRef]
- Ye, X.; Taylor, J.E. The impact of income growth on farm household nutrient intake: A case study of a prosperous rural area in Northern China. Econ. Dev. Cult. Change 1995, 43, 805–819. [Google Scholar] [CrossRef]
- Lei, L.; Zhai, S.X.; Bai, J.F. The dynamic impact of income and income distribution on food consumption among adults in rural China. J. Integr. Agric. 2021, 20, 330–342. [Google Scholar] [CrossRef]
- Payne, G. Urban land tenure policy options: Titles or rights? Habitat Int. 2001, 25, 415–429. [Google Scholar] [CrossRef]
- Luo, B.L. 40-year reform of farmland institution in China: Target, effort and the future. China Agric. Econ. Rev. 2018, 10, 16–35. [Google Scholar] [CrossRef]
- Tian, C.H.; Fang, L. Land Adjustment and Land Rental Market: Based on the Dual Perspectives of Both Quantity and Quality. Econ. Res. J. 2013, 48, 110–121. [Google Scholar]
- Lu, H.; Xie, H.L.; Yao, G.R. Impact of land fragmentation on marginal productivity of agricultural labor and non-agricultural labor supply: A case study of Jiangsu, China. Habitat Int. 2019, 83, 65–72. [Google Scholar] [CrossRef]
- Evans, H.E.; Ngau, P. Rural-urban relations, household income diversification and agricultural productivity. Dev. Change 1991, 22, 519–545. [Google Scholar] [CrossRef]
- Do, M.H. The role of savings and income diversification in households’ resilience strategies: Evidence from rural Vietnam. Soc. Indic. Res. 2023, 168, 353–388. [Google Scholar] [CrossRef]
- Lugilde, A.; Bande, R.; Riveiro, D. Precautionary saving: A review of the empirical literature. J. Econ. Surv. 2019, 33, 481–515. [Google Scholar] [CrossRef]
- Yu, P.H.; Fennell, S.; Chen, Y.Y.; Liu, H.; Xu, L.; Pan, J.W.; Bai, S.Y.; Gu, S.X. Positive impacts of farmland fragmentation on agricultural production efficiency in Qilu Lake watershed: Implications for appropriate scale management. Land Use Policy 2022, 117, 106108. [Google Scholar] [CrossRef]
- Ye, C.H.; Xu, Q.; Xu, Z.G. Land fragmentation: Historical and economics analysis. Issues Agric. Econ. 2008, 9, 9–15+110. (In Chinese) [Google Scholar]
- Xie, H.L.; Lu, H. Impact of land fragmentation and non-agricultural labor supply on circulation of agricultural land management rights. Land Use Policy 2017, 68, 355–364. [Google Scholar] [CrossRef]
- Arslan, A.; Belotti, F.; Lipper, L. Smallholder productivity and weather shocks: Adoption and impact of widely promoted agricultural practices in Tanzania. Food Policy 2017, 69, 68–81. [Google Scholar] [CrossRef]
- Me-Nsope, N.; Larkins, M. Beyond crop production: Gender relations along the pigeon pea value chain and implications for income and food security in Malawi. J. Gend. Agric. Food Secur. (Agri-Gend.) 2016, 1, 1–22. [Google Scholar] [CrossRef]
- Su, W.L.; Eriksson, T.; Zhang, L.X. Off-farm employment, land renting and concentration of farmland in the process of urbanization: Chinese evidence. China Agric. Econ. Rev. 2018, 10, 338–350. [Google Scholar] [CrossRef]
- Shevrin, H.; Dickman, S. The psychological unconscious: A necessary assumption for all psychological theory? Am. Psychol. 1980, 35, 421. [Google Scholar] [CrossRef]
- Zhou, L.; Shen, K.R. Impact of the rural land system reform on rural households’ income growth in China: Evidence from the three rights separation. Econ. Res. J. 2022, 57, 141–157. (In Chinese) [Google Scholar]
- Ci, M.X.; He, Y.F.; Zhou, L. The impact of land transfer on rural households’ consumption behavior from the perspective of sustainable development. Econ. Probl. 2024, 10, 103–111. (In Chinese) [Google Scholar]
- Gray, J. Family farms in the Scottish borders: A practical definition by hill sheep farmers. J. Rural Stud. 1998, 14, 341–356. [Google Scholar] [CrossRef]
- Ghertner, D.A. Lively lands: The spatial reproduction squeeze and the failure of the urban imaginary. Int. J. Urban Reg. 2020, 44, 561–581. [Google Scholar] [CrossRef]
- Hu, D.B.; Zhai, C.Z.; Zhao, S.B. Does digital finance promote household consumption upgrading? An analysis based on data from the China family panel studies. Econ. Model. 2023, 125, 106377. [Google Scholar] [CrossRef]
- Hong, M.Y.; Lei, L. Research on the impact of farmland transfer on rural household consumption: Evidence from Yunnan Province, China. Land 2022, 11, 2147. [Google Scholar] [CrossRef]
- D’Agostino, J.; Ralph, B. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat. Med. 1998, 17, 2265–2281. [Google Scholar] [CrossRef]
- Cheng, Y.; Hu, Y.; Zeng, W.; Liu, Z. Farmer heterogeneity and land transfer decisions based on the dual perspectives of economic endowment and land endowment. Land 2022, 11, 353. [Google Scholar] [CrossRef]
- Xiao, J.; Luo, B.L. An Important Issue in China’s Agricultural Modernization: Who Will Transform Traditional Agriculture? Evidence from the Impact of Returning Migrant Workers on Agricultural Specialisation. Reform 2023, 8, 82–100. (In Chinese) [Google Scholar]
- May, D.; Arancibia, S.; Behrendt, K.; Adams, J. Preventing young farmers from leaving the farm: Investigating the effectiveness of the young farmer payment using a behavioural approach. Land Use Policy 2019, 82, 317–327. [Google Scholar] [CrossRef]
- Lu, J.X.; He, Q. Analysis of Farmers’ Willingness to Transfer Land and Influencing Factors under the Perspective of Livelihood—A Field Survey Based on Long Village in a County of Henan Province. Rural Econ. 2016, 2, 39–43. (In Chinese) [Google Scholar]
- Zhang, Y.X.; Halder, P.; Zhang, X.N.; Qu, M. Analyzing the deviation between farmers’ Land transfer intention and behavior in China’s impoverished mountainous Area: A Logistic-ISM model approach. Land Use Policy 2020, 94, 104534. [Google Scholar] [CrossRef]
- Cheng, L.G.; Zhang, Y.; Liu, Z.B. Has agricultural land titling facilitated the transfer of rural land in China? J. Manag. World 2016, 1, 88–98. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Chen, X.P. Situation, Problem and Proposed Strategy in China’s Farmland Transfer. J. Xinjiang Norm. Univ. (Ed. Philos. Soc. Sci.) 2015, 36, 88–98. [Google Scholar] [CrossRef]
- Makhlouf, Y.; Lalley, C. Education expansion, income inequality and structural transformation: Evidence from OECD Countries. Soc. Indic. Res. 2023, 169, 255–281. [Google Scholar] [CrossRef]
- Pei, S.Y.; Zhao, S.D.; Li, X.; Li, J.H. Impacts of rural–urban labour transfer and land transfer on land efficiency in China: A analysis of mediating effects. Land 2024, 13, 702. [Google Scholar] [CrossRef]
- Pentina, I.; Tarafdar, M. From “information” to “knowing”: Exploring the role of social media in contemporary news consumption. Comput. Hum. Behav. 2014, 35, 211–223. [Google Scholar] [CrossRef]
- Wang, X.Q.; Xu, Z.G.; Li, G.; Zhuo, Y.F.; Zou, W. Farmland Transfer and Income Distribution Effect of Heterogeneous Farmers with Livelihood Capital: Evidence from CFPS. Land 2023, 12, 1398. [Google Scholar] [CrossRef]
- Sherbinin, A.D.; VanWey, L.K.; McSweeney, K.; Aggarwal, R.; Barbieri, A.; Henry, S.; Huner, L.M.; Twine, W.; Walker, R. Rural household demographics, livelihoods and the environment. Glob. Environ. Change 2008, 18, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.Y.; Wang, Y.T.; Yang, L.; Li, C.; Chen, L.D. The impact of cropland transfer on rural household income in China: The moderating effects of education. Land Use Policy 2025, 148, 107399. [Google Scholar] [CrossRef]
- Liu, Y.S. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Huy, H.T.; Lyne, M.; Ranta, N.; Nuthall, P. Drivers of transaction costs affecting participation in the rental market for cropland in Vietnam. Aust. J. Agric. Resour. Econ. 2016, 60, 476–492. [Google Scholar] [CrossRef]
- Reardon, T.; Vosti, S.A. Links between rural poverty and the environment in developing countries: Asset categories and investment poverty. World Dev. 1995, 23, 1495–1506. [Google Scholar] [CrossRef]
- Guo, Y.Z.; Wang, J.Y. Practices for rural population aging in China: Land-based pension. Habitat Int. 2024, 151, 103136. [Google Scholar] [CrossRef]
Variables | Definition | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
Dependent variables | |||||
Total consumption | log (total consumption) | 9.942 | 1.069 | 2.485 | 14.412 |
Subsistence consumption | log (subsistence consumption) | 9.402 | 1.129 | 2.485 | 14.409 |
Healthy consumption | log (healthy consumption) | 8.064 | 1.445 | 0.693 | 12.899 |
Developmental consumption | log (developmental consumption) | 7.856 | 1.644 | 1.609 | 12.561 |
Hedonic consumption | log (hedonic consumption) | 6.567 | 1.536 | 0.693 | 11.562 |
Independent variables | |||||
Land transfer-out | 1 = yes, 0 = no | 0.221 | 0.415 | 0 | 1 |
Land transfer-in | 1 = yes, 0 = no | 0.086 | 0.280 | 0 | 1 |
Control variables | |||||
Age of household head | age | 69.987 | 7.619 | 60 | 104 |
Marriage of household head | 1 = married, 0 = unmarried | 0.790 | 0.407 | 0 | 1 |
Health of household head | healthy-unhealthy: 1–5 | 3.609 | 1.264 | 1 | 5 |
Political profile of household head | 1 = party member, 0 = non-party member | 0.029 | 0.169 | 0 | 1 |
Non-agricultural employment of household head | 1 = yes, 0 = no | 0.860 | 0.347 | 0 | 1 |
Education of household head | primary schools and below = 1, middle school = 2, high school/secondary school = 3, college and above = 4 | 1.575 | 0.877 | 1 | 4 |
Loan of household head | 1 = yes, 0 = no | 0.156 | 0.363 | 0 | 1 |
Number of household members | person | 4.064 | 2.226 | 1 | 21 |
Health insurance | 1 = yes, 0 = no | 0.934 | 0.248 | 0 | 1 |
Social assistance | 1 = yes, 0 = no | 0.023 | 0.151 | 0 | 1 |
Government assistance | 1 = yes, 0 = no | 0.541 | 0.498 | 0 | 1 |
Mobile phone of household head | 1 = yes, 0 = no | 0.088 | 0.283 | 0 | 1 |
Mediating variable | |||||
Household income | log (household income) | 10.183 | 1.224 | 0 | 15.937 |
Instrumental variables | |||||
Funds for land transfer-out | log (funds for farmland transfer-out) | 7.320 | 1.139 | 1.386 | 11.002 |
Funds for land transfer-in | log (funds for farmland transfer-in) | 7.186 | 1.563 | 2.303 | 13.305 |
Variables | 2016 | 2018 | 2020 | 2022 |
---|---|---|---|---|
Land transfer-out | 17.10 | 18.53 | 20.43 | 23.79 |
Land transfer-in | 11.08 | 8.53 | 7.72 | 7.62 |
Two-way land transfer | 1.11 | 1.00 | 1.09 | 1.42 |
Variables | Total Consumption | Subsistence Consumption | Healthy Consumption | Development Consumption | Hedonic Consumption | |
---|---|---|---|---|---|---|
Land transfer-out | Yes | 41,646.280 | 26,498.390 | 9688.142 | 4691.060 | 1103.991 |
No | 35,542.450 | 22,594.250 | 7723.232 | 4865.924 | 660.529 | |
Land transfer-in | Yes | 37,278.340 | 23,783.110 | 8023.977 | 6265.905 | 545.561 |
No | 35,174.330 | 22,258.530 | 6816.751 | 4586.959 | 656.057 | |
Two-way land transfer | 49,289.310 | 31,846.870 | 10,566.760 | 5357.121 | 1619.921 |
Variables | Total Income | |
---|---|---|
Land transfer-out | Yes | 62,935.770 |
No | 51,324.200 | |
Land transfer-in | Yes | 56,173.900 |
No | 50,215.390 | |
Two-way land transfer | 78,259.890 |
Variables | (1) Tc | (2) Sc | (3) Hc | (4) Dc | (5) Hc’ | (6) Tc | (7) Sc | (8) Hc | (9) Dc | (10) Hc’ |
---|---|---|---|---|---|---|---|---|---|---|
Land transfer-out | 0.136 *** (0.023) | 0.106 *** (0.025) | 0.180 *** (0.037) | 0.030 (0.046) | 0.185 ** (0.070) | / | / | / | / | / |
Land transfer-in | / | / | / | / | / | 0.084 ** (0.033) | 0.091 *** (0.031) | 0.159 *** (0.045) | 0.016 (0.053) | −0.124 (0.087) |
age | −0.006 *** (0.002) | −0.011 *** (0.002) | 0.006 ** (0.003) | −0.006 * (0.004) | −0.015 ** (0.006) | −0.007 *** (0.002) | −0.011 *** (0.002) | 0.006 ** (0.003) | −0.010 *** (0.004) | −0.013 ** (0.006) |
marriage | 0.058 ** (0.027) | −0.009 (0.029) | 0.294 *** (0.043) | −0.314 *** (0.053) | −0.045 (0.083) | 0.050 ** (0.002) | −0.001 (0.027) | 0.275 *** (0.041) | −0.328 *** (0.051) | −0.094 (0.080) |
health | 0.024 *** (0.007) | −0.016 ** (0.008) | 0.159 *** (0.011) | −0.021 (0.014) | −0.015 (0.023) | 0.024 *** (0.007) | −0.015 ** (0.007) | 0.158 *** (0.011) | −0.015 (0.013) | −0.013 (0.022) |
political | 0.094 * (0.054) | 0.124 ** (0.057) | 0.036 (0.085) | −0.049 (0.019) | −0.229 (0.147) | 0.093 * (0.053) | 0.108 ** (0.056) | 0.044 (0.082) | −0.051 (0.105) | −0.149 (0.142) |
non-agricultural | −0.232 *** (0.030) | −0.273 *** (0.032) | −0.124 ** (0.047) | −0.065 (0.058) | −0.329 *** (0.082) | −0.308 *** (0.026) | −0.363 *** (0.028) | −0.208 *** (0.041) | −0.038 (0.051) | −0.479 *** (0.071) |
eduation | 0.047 *** (0.011) | 0.061 *** (0.011) | 0.039 ** (0.017) | 0.016 (0.021) | −0.012 (0.031) | 0.047 *** (0.010) | 0.062 *** (0.109) | 0.043 *** (0.016) | 0.024 (0.020) | −0.009 (0.030) |
income | 4.89 × 10−6 *** (1.70 × 10−7) | 5.20 × 10−6 *** (1.80 × 10−7) | 3.93 × 10−6 *** (2.58 × 10−7) | 3.96 × 10−6 *** (2.88 × 10−7) | 3.72 × 10−6 *** (32.6 × 10−7) | 4.51 × 10−6 *** (1.47 × 10−7) | 4.79 × 10−6 *** (1.55 × 10−7) | 3.65 × 10−6 *** (2.24 × 10−7) | 3.84 × 10−6 *** (2.52 × 10−7) | 3.64 × 10−6 *** (2.89 × 10−7) |
loan | 0.213 *** (0.026) | 0.038 (0.027) | 0.427 *** (0.040) | 0.181 *** (0.047) | 0.044 (0.072) | 0.200 *** (0.025) | 0.025 (0.027) | 0.433 *** (0.039) | 0.195 *** (0.046) | 0.063 (0.071) |
number household | 0.164 *** (0.005) | 0.144 *** (0.005) | 0.076 *** (0.007) | 0.294 *** (0.009) | 0.063 *** (0.014) | 0.165 *** (0.004) | 0.146 *** (0.005) | 0.076 *** (0.007) | 0.301 *** (0.008) | 0.054 *** (0.013) |
health insurance | 0.071 * (0.041) | −0.010 (0.044) | 0.298 *** (0.064) | 0.010 (0.082) | 0.055 (0.132) | 0.038 (0.037) | −0.043 (0.039) | 0.229 *** (0.102) | 0.017 (0.075) | 0.025 (0.116) |
social assistance | 0.010 (0.065) | 0.021 (0.070) | 0.174 (0.015) | −0.159 (0.125) | −0.313 (0.204) | 0.098 (0.064) | 0.007 (0.068) | 0.225 ** (0.102) | −0.134 (0.125) | −0.334 (0.208) |
government assistance | −0.026 (0.019) | −0.071 *** (0.020) | 0.001 (0.029) | −0.021 (0.037) | −0.114 ** (0.058) | −0.045 ** (0.018) | −0.093 *** (0.019) | −0.001 (0.028) | −0.013 (0.035) | −0.123 ** (0.055) |
mobile phone | 0.170 *** (0.034) | 0.201 *** (0.036) | 0.151 *** (0.053) | 0.180 *** (0.065) | 0.214 ** (0.094) | 0.189 *** (0.032) | 0.214 *** (0.034) | 0.165 *** (0.050) | 0.213 *** (0.062) | 0.218 ** (0.089) |
Cons | 9.195 *** (0.141) | 9.361 *** (0.151) | 5.889 *** (0.222) | 6.888 *** (0.285) | 7.078 *** (0.451) | 9.381 *** (0.135) | 9.539 *** (0.144) | 6.083 *** (0.211) | 7.026 *** (0.272) | 7.250 *** (0.429) |
T FE | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
P FE | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Sample | 6321 | 6321 | 6321 | 6321 | 6321 | 6321 | 6321 | 6321 | 6321 | 6321 |
R2 | 0.2891 | 0.2452 | 0.1011 | 0.2221 | 0.1041 | 0.2894 | 0.2528 | 0.0986 | 0.2286 | 0.1122 |
Variables | (1) Total Consumption | (2) Subsistence Consumption | (3) Healthy Consumption | (4) Hedonic Consumption | ||||
---|---|---|---|---|---|---|---|---|
Funds for Land transfer-out | 0.061 *** (0.016) | / | 0.064 *** (0.017) | / | 0.107 *** (0.023) | / | 0.181 *** (0.055) | / |
Funds for Land transfer-in | / | 0.134 *** (0.020) | / | 0.134 *** (0.022) | / | 0.129 *** (0.031) | / | / |
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | / |
Cons | 9.521 *** (0.117) | 8.023 *** (0.495) | 8.939 *** (0.122) | 8.619 *** (0.551) | 7.369 *** (0.171) | 4.025 *** (0.779) | 7.126 *** (1.035) | / |
T FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | / |
P FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | / |
Sample | 3526 | 3526 | 3526 | 3526 | 3526 | 3526 | 3526 | / |
R2 | 0.3457 | 0.2591 | 0.1270 | 0.1903 | 0.2450 | 0.1449 | 0.1521 | / |
Variables | Matching Methods | ATT (Transfer-Out) | t-Value | ATT (Transfer-In) | t-Value |
---|---|---|---|---|---|
Tc | nearest neighbour matching | 0.0517 *** | 2.8091 | 0.1212 *** | 4.7832 |
radius matching | 0.0517 *** | 2.8091 | 0.1212 *** | 4.7832 | |
kernel matching | 0.0517 *** | 2.8091 | 0.1212 *** | 4.7832 | |
Sc | nearest neighbour matching | 0.0481 ** | 2.5048 | 0.1239 *** | 4.6802 |
radius matching | 0.0481 ** | 2.5048 | 0.1239 *** | 4.6802 | |
kernel matching | 0.0481 ** | 2.5048 | 0.1239 *** | 4.6802 | |
Hc | nearest neighbour matching | 0.1516 *** | 5.9360 | 0.1584 *** | 3.6771 |
radius matching | 0.1516 *** | 5.9360 | 0.1584 *** | 3.6771 | |
kernel matching | 0.1516 *** | 5.9360 | 0.1584 *** | 3.6771 | |
Hc’ | nearest neighbour matching | 0.2414 *** | 5.1363 | / | |
radius matching | 0.2414 *** | 5.1363 | |||
kernel matching | 0.2414 *** | 5.1363 |
Variables | (1) Total Consumption | (2) Subsistence Consumption | (3) Healthy Consumption | (4) Hedonic Consumption | |||
---|---|---|---|---|---|---|---|
Land transfer-out | 0.403 *** (0.065) | 0.322 *** (0.068) | 0.695 *** (0.133) | 0.605 *** (0.224) | |||
Land transfer-in | 0.542 *** (0.107) | 0.579 *** (0.118) | 0.671 *** (0.155) | / | |||
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Cons | 9.444 *** (0.145) | 9.341 *** (0.116) | 9.546 *** (0.152) | 9.362 *** (0.123) | 6.919 *** (0.289) | 6.299 *** (0.176) | 7.196 *** (0.436) |
Adj-R2 | 0.1750 | 0.1007 | 0.1743 | 0.0976 | 0.1621 | 0.0985 | 0.1655 |
The one-stage F-value | 1157.08 | 594.921 | 1180.24 | 596.074 | 740.384 | 559.027 | 260.25 |
DWH-Chi2 | 17.1531 *** | 28.5528 *** | 9.3406 *** | 35.2908 *** | 26.6976 *** | 11.958 *** | 4.1239 ** |
Sample | 6321 | 6321 | 6321 | 6321 | 6321 | 6321 | 6321 |
Variables | Below Average | Above Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tc | Sc | Hc | Dc | Hc’ | Tc | Sc | Hc | Dc | Hc’ | |
Land transfer-out | 0.154 *** (0.048) | 0.220 ** (0.094) | 0.106 *** (0.034) | 0.031 (0.025) | 0.168 ** (0.067) | 0.135 *** (0.026) | 0.140 *** (0.027) | 0.199 *** (0.037) | 0.066 (0.048) | 0.315 *** (0.064) |
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Cons | 7.869 *** (0.022) | 9.285 *** (0.013) | 6.507 *** (0.016) | 9.899 *** (0.012) | 6.267 *** (0.067) | 9.835 *** (0.012) | 9.339 *** (0.013) | 7.792 *** (0.018) | 7.892 *** (0.022) | 6.396 *** (0.032) |
T FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
P FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Sample | 2596 | 1574 | 3294 | 3741 | 2912 | 3527 | 4747 | 3027 | 2580 | 3409 |
Variables | Below Average | Above Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tc | Sc | Hc | Dc | Hc’ | Tc | Sc | Hc | Dc | Hc’ | |
Land transfer-in | 0.134 *** (0.035) | 0.139 *** (0.037) | 0.195 *** (0.059) | 0.039 (0.046) | 0.042 (0.027) | 0.115 *** (0.037) | 0.115 *** (0.037) | 0.128 ** (0.062) | 0.027 (0.052) | 0.229 ** (0.091) |
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Cons | 9.939 *** (0.010) | 9.344 *** (0.011) | 7.814 *** (0.019) | 8.216 *** (0.014) | 8.142 *** (0.029) | 9.924 *** (0.011) | 9.442 *** (0.011) | 7.869 *** (0.019) | 7.905 *** (0.015) | 6.661 *** (0.027) |
T FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
P FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Sample | 3236 | 3240 | 3745 | 2760 | 4651 | 3085 | 3081 | 2576 | 3561 | 1670 |
Variables | Income | |
---|---|---|
(1) | (2) | |
Land transfer-out | 0.141 *** (0.024) | / |
Land transfer-in | / | 0.115 *** (0.030) |
Control Variables | YES | YES |
Cons | 10.745 *** (0.139) | 11.001 *** (0.135) |
T FE | YES | YES |
P FE | YES | YES |
Sample | 6321 | 6321 |
Variables | (1) Tc | (2) Sc | (3) Hc | (4) Dc | (5) Hc’ |
---|---|---|---|---|---|
Two-way land transfer | 0.186 ** (0.092) | 0.306 *** (0.099) | 0.027 (0.139) | 0.157 (0.167) | 0.382 * (0.225) |
Control Variables | YES | YES | YES | YES | YES |
Cons | 9.450 *** (0.140) | 9.547 *** (0.149) | 6.418 *** (0.213) | 6.991 *** (0.275) | 7.367 *** (0.439) |
T FE | YES | YES | YES | YES | YES |
P FE | YES | YES | YES | YES | YES |
Sample | 181 | 181 | 181 | 181 | 181 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, P.; Jin, Q.; Xiang, Y. The Catalyst to Activate Rural Economic Vitality: The Impact of Land Transfer on the Consumption Behaviour of Older Farmers in China. Land 2025, 14, 1168. https://doi.org/10.3390/land14061168
Cheng P, Jin Q, Xiang Y. The Catalyst to Activate Rural Economic Vitality: The Impact of Land Transfer on the Consumption Behaviour of Older Farmers in China. Land. 2025; 14(6):1168. https://doi.org/10.3390/land14061168
Chicago/Turabian StyleCheng, Peng, Qiaosen Jin, and Yunhua Xiang. 2025. "The Catalyst to Activate Rural Economic Vitality: The Impact of Land Transfer on the Consumption Behaviour of Older Farmers in China" Land 14, no. 6: 1168. https://doi.org/10.3390/land14061168
APA StyleCheng, P., Jin, Q., & Xiang, Y. (2025). The Catalyst to Activate Rural Economic Vitality: The Impact of Land Transfer on the Consumption Behaviour of Older Farmers in China. Land, 14(6), 1168. https://doi.org/10.3390/land14061168